Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Org Chem ; 75(3): 937-40, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20030302

ABSTRACT

Protic aminophosphines with multiple chiral centers were synthesized in good yields and high purity by the nucleophilic ring-opening of N-protected cyclic sulfamidates with metal phosphides, followed by hydrolysis and deprotection. This synthetic approach is clean, scalable, and high yielding. The method provides an efficient alternative route for the synthesis of chiral aminophosphines.

3.
Dalton Trans ; (39): 8301-7, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19789782

ABSTRACT

The aminophosphine ligands R(2)P(CH(2))(2)NH(2) and R(2)P(CH(2))(3)NH(2) (R = Ph, (i)Pr, (t)Bu) were isolated in good to excellent yields from the reaction of LiPR(2) with Cl(CH(2))(2)N(TMS)(2) and Cl(CH(2))(3)N(TMS)(2), respectively, followed by hydrolysis. This approach allows fine tuning of the ligands' stereoelectronic properties through the variation of the substituents on the phosphine. The aminophosphine ligands were used to prepare the ruthenium complexes RuCl(2)(R(2)P(CH(2))(2)NH(2))(2) and RuCl(2)(R(2)P(CH(2))(3)NH(2))(2) by reacting a 2:1 mixture of the respective ligand and [RuCl(2)(cod)](n) in an appropriate solvent. The resulting complexes were found to be excellent catalysts for the hydrogenation of ketones and imines.

4.
Inorg Chem ; 48(2): 735-43, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19035760

ABSTRACT

Six complexes of the type trans-[Fe(NCMe)2(P-N-N-P)]X2 (X = BF4(-), B{Ar(f)}4(-)) (Ar(f) = 3,5-(CF3)2C6H3) containing diiminodiphosphine ligands and the complexes trans-[Fe(NCMe)2(P-NH-NH-P)][BF4]2 with a diaminodiphosphine ligand were obtained by the reaction of Fe(II) salts with achiral and chiral P-N-N-P or P-NH-NH-P ligands, respectively, in acetonitrile at ambient temperature. The P-N-N-P ligands are derived from reaction of ortho-diphenylphosphinobenzaldehyde with the diamines 1,2-ethylenediamine, 1,3-propylenediamine, (S,S)-1,2-disopropyl-1,2-diaminoethane, and (R,R)-1,2-diphenyl-1,2-diaminoethane. Some complexes could also be obtained for the first time in a one-pot template synthesis under mild reaction conditions. Single crystal X-ray diffraction studies of the complexes revealed a trans distorted octahedral structure around the iron. The iPr or Ph substituents on the diamine were found to be axial in the five-membered Fe-N-CHR-CHR-N- ring of the chiral P-N-N-P ligands. A steric clash between the imine hydrogen and the substituent probably determines this stereochemistry. The diaminodiphosphine complex has longer Fe-N and Fe-P bonds than the analogous diiminodiphosphine complex. The new iron compounds were used as precatalysts for the hydrogenation of acetophenone. The complexes without axial substituents on the diamine had moderate catalytic activity while that with axial Ph substituents had low activity but fair (61%) enantioselectivity for the asymmetric hydrogenation of acetophenone. The fact that the diaminodiphosphine complex has a slightly higher activity than the corresponding diiminodiphosphine complex suggests that hydrogenation of the imine groups in the P-N-N-P ligand may be important for catalyst activation. Evidence is provided, including the first density-functional theory calculations on iron-catalyzed outer-sphere ketone hydrogenation, that the mechanism is similar to that of ruthenium analogues.

6.
Dalton Trans ; (24): 2536-41, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17563789

ABSTRACT

The complexes RuHCl((R)-binap)(L-NH2) with L-NH2 = (S)-histidine-Me-ester (1), histamine (3), (S)-histidinol (4) or 1-Me-(S)-histidine-Me-ester (5), and RuHCl((S)-binap)(L-NH(2)) with L-NH2 = (S)-histidine-Me-ester (2) have been prepared in 60-81% overall yields in a one-pot, three-step procedure from the precursor RuCl2(PPh3)3. Their octahedral structures with hydride trans to chloride were deduced from their NMR spectra and confirmed by the results of a single crystal X-ray diffraction study for complex 3. Under H2 and in the presence of KOtBu, complexes 1-5 in 2-propanol form moderately active catalyst precursors for the asymmetric hydrogenation of acetophenone to 1-phenylethanol. Complex 5 is more active and enantioselective than complexes 1-4, allowing complete conversion to 1-phenylethanol in 46% e.e. (R) in 72 h at 20 degrees C under 1 MPa of H2 with substrate : catalyst : base = 2000 : 1 : 30. Complex 5, when activated, also catalyzes the hydrogenation of trans-4-phenyl-3-buten-2-one to exclusively the allyl alcohol 4-phenyl-3-buten-2-ol under 2.7 MPa of H2 at 50 degrees C in 2-propanol. This selectivity for C=O versus C=C hydrogenation is consistent with a mechanism involving the outer sphere transfer of hydride and proton to the polar bond. Further extensions to complexes with peptides with N-terminal histidine groups appear feasible on the basis of the current work.

7.
Chemistry ; 13(17): 4895-913, 2007.
Article in English | MEDLINE | ID: mdl-17367097

ABSTRACT

Critical analysis of possible strategies for the synthesis of novel carbo-benzene derivatives suggests several [(18-n)+n] routes for the preparation of hexaoxy[6]pericyclyne precursors. Beyond the previously attempted [9+9] symmetrical scheme (n=9), the a priori most selective strategies are those for which n=1, 4, 7, 10, 13, and 16. They involve a cyclizing double-propargylation of a C(18-n) omega-bis-terminal-skipped oligoyne containing (19-n)/3 triple bonds with a C(n) omega-dicarbonyl-skipped oligoyne containing (n-1)/3 triple bonds. To complement the previously used [11+7] strategy, the [14+4] and [8+10] strategies were thus explored. They proved to be efficient, affording seven novel hexaoxy[6]pericyclynes corresponding to six different substitution patterns. These compounds were obtained in 7-15 steps as mixtures of stereoisomers. Thus, by using dibenzoylacetylene as the C(4) electrophile, a [14+4] strategy allowed the synthesis of two hexaphenyl representatives with two or four free carbinol vertices. This approach also afforded tetraphenyl representatives in which the two remaining carbinoxy vertices were substituted with either two alkynyl or one 4-anisyl and one 4-pyridyl groups. By using the hexacarbonyldicobalt complex of butynedial as the C(4) electrophile, a [14+4] strategy also allowed the isolation of a tetraphenylhexaoxy[6]pericyclyne with two adjacent unsubstituted carbinol vertices. A regioisomer with two opposite unsubstituted carbinol vertices was obtained through an [8+10] strategy and its oxidation afforded the corresponding pericyclynedione. Several attempts at synthesizing diphenylhexaoxy[6]pericyclynes with four unsubstituted carbinoxy vertices are described. Only an [8+10] strategy allowed the generation of a fragile diphenylhexaoxy[6]pericyclyne with four adjacent unsubstituted carbinoxy vertices, which could be partly characterized. These results show that the synthesis of the nonsubstituted hexahydroxy[6]pericyclyne, the ring carbo-mer of [6]cyclitol, is a difficult challenge.

8.
Chemistry ; 13(17): 4914-31, 2007.
Article in English | MEDLINE | ID: mdl-17367098

ABSTRACT

Reductive treatment of stereoisomeric mixtures of variously substituted hexaoxy[6]pericyclynes with SnCl(2)/HCl led to the corresponding substituted carbo-benzenes. Tetramethoxyhexaphenyl[6]pericylynediol and dimethoxyhexaphenyl[6]pericyclynetetrol thus proved to be alternative precursors of hexaphenyl-carbo-benzene, previously described. Another hexaaryl-carbo-benzenic chromophore with 4-pyridyl and 4-anisyl substituents was targeted for its second-order nonlinear optical properties and was obtained by aromatization of a dimethoxy[6]pericyclynetetrol. Two alkynyl substituents in para positions were also found to be compatible with the C(18) carbo-benzene ring, provided that the four remaining vertices are substituted by phenyl groups. In the protected series, bis(trimethylsilylethynyl)hexaphenyl-carbo-benzene (C(18)Ph(4)(C triple bond C-TMS)(2)) could be isolated and fully characterized, even by X-ray crystallography. In the bis-terminal series, the diethynylhexaphenyl-carbo-benzene C(18)Ph(4)(C triple bond C-H)(2) could not be isolated in the pure form. It could, however, be generated by two different methods and identified by the corresponding (1)H NMR spectra. Unsubstituted carbo-benzene C(18)H(6) remains unknown, but tetraphenyl-carbo-benzenes C(18)Ph(4)H(2) with two unsubstituted vertices proved to be viable molecules. Whereas the "para" isomer could be characterized by MS and (1)H and (13)C NMR spectroscopy only in a mixture with polymeric materials, the "ortho" isomer (with adjacent CH vertices) could be isolated, and its structure was determined by using X-ray crystallography. The structure calculated at the B3PW91/6-31G** level of theory turned out to be in excellent agreement with the experimental structure. The (1)H and (13)C NMR chemical shifts of hexa- and tetraphenyl-carbo-benzenes were also calculated at the B3LYP/6-31+G** level of theory and were found to correlate with experimental spectra. The remote NMR deshielding of peripheral protons (through up to five bonds) revealed a very strong diatropic circulation around the C(18) ring, regardless of the substitution pattern. In full agreement with theoretical investigations, it has been demonstrated experimentally that the carbo-benzene ring is "independently" aromatic, in accord with structural-energetic and -magnetic criteria.

9.
J Am Chem Soc ; 128(19): 6508-19, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16683817

ABSTRACT

Reaction of the dimeric species [(eta3-Ind)Pd(mu-Cl)]2 (1) (Ind = indenyl) with NEt3 gives the complex (eta(3-5)-Ind)Pd(NEt3)Cl (3), whereas the analogous reactions with BnNH2 (Bn = PhCH2) or pyridine (py) afford the complexes trans-L2Pd(eta1-Ind)Cl (L = BnNH2 (4), py (5)). Similarly, the one-pot reaction of 1 with a mixture of BnNH2 and the phosphine ligands PR3 gives the mixed-ligand, amino and phosphine species (PR3)(BnNH2)Pd(eta1-Ind)Cl (R = Cy (6a), Ph (6b)); the latter complexes can also be prepared by addition of BnNH2 to (eta(3-5)-Ind)Pd(PR3)Cl (R = Cy (2a), Ph (2b)). Complexes 6 undergo a gradual decomposition in solution to generate the dinuclear Pd(I) compounds (mu,eta3-Ind)(mu-Cl)Pd2(PR3)2 (R = Cy (7a), Ph (7b)) and the Pd(II) compounds (BnNH2)(PR3)PdCl2 (R = Cy (8a), Ph (8b)), along with 1,1'-biindene. The formation of 7 is proposed to proceed by a comproportionation reaction between in situ-generated Pd(II) and Pd0 intermediates. Interestingly, the reverse of this reaction, disproportionation, also occurs spontaneously to give 2. All new compounds have been characterized by NMR spectroscopy and, in the case of 3, 4, 5, 6a, 7a, 7b, and 8a, by X-ray crystallography.

SELECTION OF CITATIONS
SEARCH DETAIL
...