Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 76(10): 2389-2403, 2022 10.
Article in English | MEDLINE | ID: mdl-35984008

ABSTRACT

The persistence of intrapopulation phenotypic variation typically requires some form of balancing selection because drift and directional selection eventually erode genetic variation. Heterozygote advantage remains a classic explanation for the maintenance of genetic variation in the face of selection. However, examples of heterozygote advantage, other than those associated with disease resistance, are rather uncommon. Across most of its distribution, males of the aposematic moth Arctia plantaginis have two hindwing phenotypes determined by a heritable one locus-two allele polymorphism (genotypes: WW/Wy = white morph, yy = yellow morph). Using genotyped moths, we show that the presence of one or two copies of the yellow allele affects several life-history traits. Reproductive output of both males and females and female mating success are negatively affected by two copies of the yellow allele. Females carrying one yellow allele (i.e., Wy) have higher fertility, hatching success, and offspring survival than either homozygote, thus leading to strong heterozygote advantage. Our results indicate strong female contribution especially at the postcopulatory stage in maintaining the color polymorphism. The interplay between heterozygote advantage, yellow allele pleiotropic effect, and morph-specific predation pressure may exert balancing selection on the color locus, suggesting that color polymorphism may be maintained through complex interactions between natural and sexual selection.


Subject(s)
Life History Traits , Moths , Animals , Male , Female , Heterozygote , Phenotype , Moths/genetics , Polymorphism, Genetic , Color
2.
J Evol Biol ; 35(3): 467-478, 2022 03.
Article in English | MEDLINE | ID: mdl-35239231

ABSTRACT

The definition of colour polymorphism is intuitive: genetic variants express discretely coloured phenotypes. This classification is, however, elusive as humans form subjective categories or ignore differences that cannot be seen by human eyes. We demonstrate an example of a 'cryptic morph' in a polymorphic wood tiger moth (Arctia plantaginis), a phenomenon that may be common among well-studied species. We used pedigree data from nearly 20,000 individuals to infer the inheritance of hindwing colouration. The evidence supports a single Mendelian locus with two alleles in males: WW and Wy produce the white and yy the yellow hindwing colour. The inheritance could not be resolved in females as their hindwing colour varies continuously with no clear link with male genotypes. Next, we investigated if the male genotype can be predicted from their phenotype by machine learning algorithms and by human observers. Linear discriminant analysis grouped male genotypes with 97% accuracy, whereas humans could only group the yy genotype. Using vision modelling, we also tested whether the genotypes have differential discriminability to humans, moth conspecifics and their bird predators. The human perception was poor separating the genotypes, but avian and moth vision models with ultraviolet sensitivity could separate white WW and Wy males. We emphasize the importance of objective methodology when studying colour polymorphism. Our findings indicate that by-eye categorization methods may be problematic, because humans fail to see differences that can be visible for relevant receivers. Ultimately, receivers equipped with different perception than ours may impose selection to morphs hidden from human sight.


Subject(s)
Moths , Animals , Color , Female , Humans , Male , Moths/genetics , Phenotype , Pigmentation/genetics , Polymorphism, Genetic
3.
Behav Ecol ; 31(3): 844-850, 2020.
Article in English | MEDLINE | ID: mdl-32595271

ABSTRACT

To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation exposed to selection by them. We studied these aspects in the wood tiger moth Arctia plantaginis, which has two locally co-occurring male color morphs in Europe: yellow and white. When threatened, both morphs produce defensive secretions from their abdomen and from thoracic glands. Abdominal fluid has shown to be more important against invertebrate predators than avian predators, and the defensive secretion of the yellow morph is more effective against ants. Here, we focused on the morph-linked reproductive costs of secretion of the abdominal fluid and quantified the proportion of phenotypic and genetic variation in it. We hypothesized that, if yellow males pay higher reproductive costs for their more effective aposematic display, the subsequent higher mating success of white males could offer one explanation for the maintenance of the polymorphism. We first found that the heritable variation in the quantity of abdominal secretion was very low (h 2 = 0.006) and the quantity of defensive secretion was not dependent on the male morph. Second, deploying the abdominal defensive secretion decreased the reproductive output of both color morphs equally. This suggests that potential costs of pigment production and chemical defense against invertebrates are not linked in A. plantaginis. Furthermore, our results indicate that environmentally induced variation in chemical defense can alter an individual's fitness significantly.

4.
J Anim Ecol ; 89(2): 494-505, 2020 02.
Article in English | MEDLINE | ID: mdl-31538333

ABSTRACT

Trade-offs have been shown to play an important role in the divergence of mating strategies and sexual ornamentation, but their importance in explaining warning signal diversity has received less attention. In aposematic organisms, allocation costs of producing the conspicuous warning signal pigmentation under nutritional stress could potentially trade-off with life-history traits and maintain variation in warning coloration. We studied this with an aposematic herbivore Arctia plantaginis (Arctiidae), whose larvae and adults show extensive variation in aposematic coloration. In larvae, less melanic coloration (i.e. larger orange patterns) produces a more efficient warning signal against predators, whereas high amounts of melanism (smaller orange pattern) enhance thermoregulation, correlate with better immunity and make individuals harder to detect for naïve predators. We conducted a factorial rearing experiment with larvae originating from lines selected for either small or large orange signal size, which were reared on an artificial diet that had either low or high protein content. Protein content of the diet is critical for melanin production. We measured the effects of diet on individual coloration, life-history traits, immune defence and reproductive output. We also compared the responses to dietary conditions between the small and large larval signal genotypes. Protein content of the diet did not affect warning coloration in the larval stage, but larval signal sizes differed significantly among selection lines, confirming that its variation is mainly genetically determined. In adults, signal line or diet did not affect coloration in hindwings, but males' forewings had more melanin on the high than on low protein diet. Contrary to coloration, diet quality had a stronger impact on life-history traits: individuals developed for longer had smaller hindwing sizes in females and lower immune defence on the low protein content diet compared with the high. These costs were higher for more melanic larval signal genotypes in terms of development time and female hindwing size. We conclude that low plasticity in warning signal characteristics makes signal expression robust under varying dietary conditions. Therefore, variation in diet quality is not likely to constrain signal expression, but can have a bigger impact on performance.


Subject(s)
Life History Traits , Moths , Animals , Female , Herbivory , Larva , Male , Pigmentation
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1783): 20190295, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31438813

ABSTRACT

Insect metamorphosis is one of the most recognized processes delimiting transitions between phenotypes. It has been traditionally postulated as an adaptive process decoupling traits between life stages, allowing evolutionary independence of pre- and post-metamorphic phenotypes. However, the degree of autonomy between these life stages varies depending on the species and has not been studied in detail over multiple traits simultaneously. Here, we reared full-sib larvae of the warningly coloured wood tiger moth (Arctia plantaginis) in different temperatures and examined their responses for phenotypic (melanization change, number of moults), gene expression (RNA-seq and qPCR of candidate genes for melanization and flight performance) and life-histories traits (pupal weight, and larval and pupal ages). In the emerging adults, we examined their phenotypes (melanization and size) and compared them at three condition proxies: heat absorption (ability to engage flight), flight metabolism (ability to sustain flight) and overall flight performance. We found that some larval responses, as evidenced by gene expression and change in melanization, did not have an effect on the adult (i.e. size and wing melanization), whereas other adult traits such as heat absorption, body melanization and flight performance were found to be impacted by rearing temperature. Adults reared at high temperature showed higher resting metabolic rate, lower body melanization, faster heating rate, lower body temperature at take-off and inferior flight performance than cold-reared adults. Thus, our results did not unambiguously support the environment-matching hypothesis. Our results illustrate the importance of assessing multiple traits across life stages as these may only be partly decoupled by metamorphosis. This article is part of the theme issue 'The evolution of complete metamorphosis'.


Subject(s)
Moths/growth & development , Animals , Larva/growth & development , Larva/physiology , Metamorphosis, Biological , Moths/physiology , Temperature
6.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28954910

ABSTRACT

Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing coloration and secretes distinct defensive fluids from its thoracic glands and abdomen. We presented the two defensive fluids from laboratory-reared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive fluids are target-specific: thoracic fluids, and particularly 2-sec-butyl-3-methoxypyrazine, which they contain, deterred birds, but caused no aversive response in ants. By contrast, abdominal fluids were particularly deterrent to ants, while birds did not find them repellent. Our study, to our knowledge, is the first to show evidence of a single species producing separate chemical defences targeted to different predator types, highlighting the importance of taking into account complex predator communities in studies on the evolution of prey defence diversity.


Subject(s)
Ants , Birds , Body Fluids/chemistry , Moths/chemistry , Predatory Behavior , Animals , Biological Evolution , Color , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...