Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Perioper Med ; 7: e54926, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954808

ABSTRACT

BACKGROUND: Exposure to opioids after surgery is the initial contact for some people who develop chronic opioid use disorder. Hence, effective postoperative pain management, with less reliance on opioids, is critical. The Perioperative Opioid Quality Improvement (POQI) program developed (1) a digital health platform leveraging patient-survey-reported risk factors and (2) a postsurgical pain risk stratification algorithm to personalize perioperative care by integrating several commercially available digital health solutions into a combined platform. Development was reduced in scope by the COVID-19 pandemic. OBJECTIVE: This pilot study aims to assess the screening performance of the risk algorithm, quantify the use of the POQI platform, and evaluate clinicians' and patients' perceptions of its utility and benefit. METHODS: A POQI platform prototype was implemented in a quality improvement initiative at a Canadian tertiary care center and evaluated from January to September 2022. After surgical booking, a preliminary risk stratification algorithm was applied to health history questionnaire responses. The estimated risk guided the patient assignment to a care pathway based on low or high risk for persistent pain and opioid use. Demographic, procedural, and medication administration data were extracted retrospectively from the electronic medical record. Postoperative inpatient opioid use of >90 morphine milligram equivalents per day was the outcome used to assess algorithm performance. Data were summarized and compared between the low- and high-risk groups. POQI use was assessed by completed surveys on postoperative days 7, 14, 30, 60, 90, and 120. Semistructured patient and clinician interviews provided qualitative feedback on the platform. RESULTS: Overall, 276 eligible patients were admitted for colorectal procedures. The risk algorithm stratified 203 (73.6%) as the low-risk group and 73 (26.4%) as the high-risk group. Among the 214 (77.5%) patients with available data, high-risk patients were younger than low-risk patients (age: median 53, IQR 40-65 years, vs median 59, IQR 49-69 years, median difference five years, 95% CI 1-9; P=.02) and were more often female patients (45/73, 62% vs 80/203, 39.4%; odds ratio 2.5, 95% CI 1.4-4.5; P=.002). The risk stratification was reasonably specific (true negative rate=144/200, 72%) but not sensitive (true positive rate=10/31, 32%). Only 39.7% (85/214) patients completed any postoperative quality of recovery questionnaires (only 14, 6.5% patients beyond 60 days after surgery), and 22.9% (49/214) completed a postdischarge medication survey. Interviewed participants welcomed the initiative but noted usability issues and poor platform education. CONCLUSIONS: An initial POQI platform prototype was deployed operationally; the risk algorithm had reasonable specificity but poor sensitivity. There was a significant loss to follow-up in postdischarge survey completion. Clinicians and patients appreciated the potential impact of preemptively addressing opioid exposure but expressed shortcomings in the platform's design and implementation. Iterative platform redesign with additional features and reevaluation are required before broader implementation.

2.
JMIR Perioper Med ; 6: e47398, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37725426

ABSTRACT

BACKGROUND: Anesthesiologists require an understanding of their patients' outcomes to evaluate their performance and improve their practice. Traditionally, anesthesiologists had limited information about their surgical outpatients' outcomes due to minimal contact post discharge. Leveraging digital health innovations for analyzing personal and population outcomes may improve perioperative care. BC Children's Hospital's postoperative follow-up registry for outpatient surgeries collects short-term outcomes such as pain, nausea, and vomiting. Yet, these data were previously not available to anesthesiologists. OBJECTIVE: This quality improvement study aimed to visualize postoperative outcome data to allow anesthesiologists to reflect on their care and compare their performance with their peers. METHODS: The postoperative follow-up registry contains nurse-reported postoperative outcomes, including opioid and antiemetic administration in the postanesthetic care unit (PACU), and family-reported outcomes, including pain, nausea, and vomiting, within 24 hours post discharge. Dashboards were iteratively co-designed with 5 anesthesiologists, and a department-wide usability survey gathered anesthesiologists' feedback on the dashboards, allowing further design improvements. A final dashboard version has been deployed, with data updated weekly. RESULTS: The dashboard contains three sections: (1) 24-hour outcomes, (2) PACU outcomes, and (3) a practice profile containing individual anesthesiologist's case mix, grouped by age groups, sex, and surgical service. At the time of evaluation, the dashboard included 24-hour data from 7877 cases collected from September 2020 to February 2023 and PACU data from 8716 cases collected from April 2021 to February 2023. The co-design process and usability evaluation indicated that anesthesiologists preferred simpler designs for data summaries but also required the ability to explore details of specific outcomes and cases if needed. Anesthesiologists considered security and confidentiality to be key features of the design and most deemed the dashboard information useful and potentially beneficial for their practice. CONCLUSIONS: We designed and deployed a dynamic, personalized dashboard for anesthesiologists to review their outpatients' short-term postoperative outcomes. This dashboard facilitates personal reflection on individual practice in the context of peer and departmental performance and, hence, the opportunity to evaluate iterative practice changes. Further work is required to establish their effect on improving individual and department performance and patient outcomes.

3.
Crit Rev Biomed Eng ; 48(4): 235-260, 2020.
Article in English | MEDLINE | ID: mdl-33463960

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant worldwide health concern in recent months. The world has not dealt with such adversities since World War II. The spread has had a devastating and massive impact on global health, the economy, and people's everyday lives. With the crisis looming around the world, there is not yet any report of a clinically approved drug effective against this virus or or vaccine that can prevent people from getting infected. In this article, we describe different types of diagnostic tests currently used to detect SARS-CoV-2 infection. We also present an overview of the basic principles involved, advantages, and the pitfalls associated with each technique. This article also provides an insight into various supplementary diagnostic modalities, including recent advancements in sensing technologies and further clinical improvement and novelties to fight this pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Diagnostic Imaging , Humans , Pandemics , Remote Sensing Technology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...