Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 114: 179-87, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22503192

ABSTRACT

A kinetic model incorporating adsorption, desorption and biodegradation processes was developed to describe the bioregeneration of granular activated carbon (GAC) loaded with 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, in simultaneous adsorption and biodegradation processes. The model was numerically solved and the results showed that the kinetic model was well-fitted (R(2)>0.83) to the experimental data at different GAC dosages and at various initial 4-CP and 2,4-DCP concentrations. The rate of bioregeneration in simultaneous adsorption and biodegradation processes was influenced by the ratio of initial chlorophenol concentration to GAC dosage. Enhancement in the rate of bioregeneration was achieved by using the lowest ratio under either one of the following experimental conditions: (1) increasing initial chlorophenol concentration at constant GAC dosage and (2) increasing GAC dosage at constant initial chlorophenol concentration. It was found that the rate enhancement was more pronounced under the second experimental condition.


Subject(s)
Bacteria, Aerobic/metabolism , Charcoal/chemistry , Chlorophenols/isolation & purification , Chlorophenols/metabolism , Models, Biological , Models, Chemical , Adsorption , Biodegradation, Environmental , Computer Simulation , Kinetics
2.
Bioresour Technol ; 102(21): 9876-83, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890353

ABSTRACT

The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Nitrogen/isolation & purification , Particle Size , Polyurethanes/chemistry , Water Purification/instrumentation , Water Purification/methods , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Hydrogen-Ion Concentration , Kinetics , Oxygen/analysis , Solubility
3.
Bioresour Technol ; 102(20): 9497-502, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21871793

ABSTRACT

The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.


Subject(s)
Biodegradation, Environmental , Carbon/metabolism , Chlorophenols/metabolism , Adsorption , Biomass , Kinetics
4.
Environ Technol ; 30(7): 725-36, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19705610

ABSTRACT

The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.


Subject(s)
Biofilms , Bioreactors , Nitrogen Compounds/isolation & purification , Nitrophenols/isolation & purification , Water Purification/methods , Equipment Design , Kinetics , Quinones/chemistry , Sewage , Spectrum Analysis , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...