Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672916

ABSTRACT

This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.

2.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679077

ABSTRACT

Products derived from wheat grains are an important source of protein in the daily diet of people in many parts of the world. The biological value of protein is determined by its amino acid composition and the proportions of the individual amino acids. Synthesis of these compounds in wheat grains is influenced by genetic factors, as well as habitat conditions and the agrotechnology applied in cultivation. The aim of this study was to assess the effect of production technology (integrated, intensive) on the grain yield and the content amino acid profile of protein in common and durum wheat grain. Field research was conducted at the Experimental Station IUNG-PIB in Osiny (Poland) in two growing seasons. It was found that grain yield significantly depended on the weather conditions in the years of harvesting and genotype, but did not depend on the production technology. On the other hand, the protein content and their amino acid composition depended significantly on the production technology and genotype. A significantly higher content of protein substances was found in durum wheat grain. Increasing the intensity of production technology had a positive effect on the total protein content and the content of individual amino acids, both exogenous and endogenous. The amino acid limiting the biological value of protein contained in grains of both wheat species was lysine, and the deficiency of this amino acid was significantly lower in grain protein from intensive than integrated cultivation technology.

3.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807310

ABSTRACT

This work aimed to evaluate the effect of partial replacement of semolina with 0, 1, 5, 10, 15, and 20% of ground buckwheat hull (BH) on the chemical composition, antioxidant properties, color, cooking characteristics, and sensory properties of wheat pasta. Pasta samples were prepared by dough lamination (tagliatelle shape) and dried at 55 °C until the moisture content was 11-12% (wet basis). Analyses of samples showed that the addition of BH caused an increase in fiber content in pasta from 4.31% (control pasta) to 14.15% (pasta with 20% of BH). Moreover, the brightness and yellowness of BH-enriched products were significantly decreased compared to the control sample, and the total color difference ranged from 23.84 (pasta with 1% of BH) to 32.56 (pasta with 15% BH). In addition, a decrease in optimal cooking time, as well as an increased weight index and cooking loss, was observed in BH-enriched pasta samples. Furthermore, BH-enriched cooked pasta had significantly higher total phenolic content and antioxidant activity but an unpleasant smell and taste, especially if the level of BH was higher than 10%.


Subject(s)
Fagopyrum , Triticum , Cooking , Dietary Fiber/analysis , Flour/analysis , Taste , Triticum/chemistry
4.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946646

ABSTRACT

Dried and crushed dandelion roots (Taraxacum officinale F. H. Wigg.) (TO) were used as a formulation additive (at the amount of 0, 1, 3, 4, 5, and 6 g 100 g-1 flour) to wheat bread. The farinographic properties of the dough and the physical and chemical properties of the bread were evaluated. It was found that the addition of dried flour caused a significant decrease in water absorption by the flour (1% and higher TO level), an increase in the development time (from 2% to 5% TO addition) and dough stability (3% and 4% TO level), and an increase in dough softening (4% and higher TO level). As the substitution of TO for wheat flour increased, there was a gradual decrease in loaf volume, an increase in specific weight and crumb hardness, and a darkening of the crumb color. The total polyphenol content increased linearly with the percentage increase of dried root additions TO from 0.290 to 0.394 mg GAE g-1 d.m., which translated into an increase in the antioxidant activity of the bread. It was found that dried crushed roots of Taraxacum officinale can be a recipe additive for wheat bread; however, due to their specific smell and bitter aftertaste, the level of this additive should not exceed 3 g 100 g-1 flour.


Subject(s)
Bread/analysis , Flour/analysis , Food Quality , Plant Roots/chemistry , Taraxacum/chemistry , Triticum
5.
J Anal Methods Chem ; 2017: 4315678, 2017.
Article in English | MEDLINE | ID: mdl-28243483

ABSTRACT

Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models' characteristics were as follows: R2 = 0.97, PRESS = 2.14; R2 = 0.96, PRESS = 0.69; R2 = 0.95, PRESS = 1.27; R2 = 0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2 = 0.86; 0.82; and 0.78, resp.).

SELECTION OF CITATIONS
SEARCH DETAIL
...