Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Intern Med ; 290(5): 993-1009, 2021 11.
Article in English | MEDLINE | ID: mdl-34156133

ABSTRACT

Brain oscillations underlie the function of our brains, dictating how we both think and react to the world around us. The synchronous activity of neurons generates these rhythms, which allow different parts of the brain to communicate and orchestrate responses to internal and external stimuli. Perturbations of cognitive rhythms and the underlying oscillator neurons that synchronize different parts of the brain contribute to the pathophysiology of diseases including Alzheimer's disease, (AD), Parkinson's disease (PD), epilepsy and other diseases of rhythm that have been studied extensively by Gyorgy Buzsaki. In this review, we discuss how neurologists manipulate brain oscillations with neuromodulation to treat diseases and how this can be leveraged to improve cognition and pathology underlying AD. While multiple modalities of neuromodulation are currently clinically indicated for some disorders, nothing is yet approved for improving memory in AD. Recent investigations into novel methods of neuromodulation show potential for improving cognition in memory disorders. Here, we demonstrate that neuronal stimulation using audiovisual sensory stimulation that generated 40-HZ gamma waves reduced AD-specific pathology and improved performance in behavioural tests in mouse models of AD, making this new mode of neuromodulation a promising new avenue for developing a new therapeutic intervention for the treatment of dementia.


Subject(s)
Alzheimer Disease , Brain Waves , Acoustic Stimulation , Alzheimer Disease/therapy , Animals , Brain , Cognition , Mice , Neurons , Photic Stimulation
2.
Invest Ophthalmol Vis Sci ; 41(13): 4195-202, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11095615

ABSTRACT

PURPOSE: To identify the molecules in normal human intraocular fluid (aqueous humor and vitreous) that inhibit the functional activity of the complement system. METHODS: Aqueous humor and vitreous were obtained from patients with noninflammatory ocular disease at the time of surgery. Samples were incubated with normal human serum (NHS), and the mixture assayed for inhibition of the classical and alternative complement pathways using standard CH(50) and AH(50) hemolytic assays, respectively. Both aqueous humor and vitreous were fractionated by microconcentrators and size exclusion column chromatography. The inhibitory molecules were identified by immunoblotting as well as by studying the effect of depletion of membrane cofactor protein (MCP), decay-accelerating factor (DAF), and CD59 on inhibitory activity. RESULTS: Both aqueous humor and vitreous inhibited the activity of the classical pathway (CH(50)). Microcentrifugation revealed the major inhibitory activity resided in the fraction with an M(r) >/= 3 kDa. Chromatography on an S-100-HR column demonstrated that the most potent inhibition was associated with the high-molecular-weight fractions (>/=19.5 kDa). In contrast to unfractionated aqueous and vitreous, fractions with an M(r) >/= 3 kDa also had an inhibitory effect on the alternative pathway activity (AH(50)). The complement regulatory activity in normal human intraocular fluid was partially blocked by monoclonal antibodies against MCP, DAF, and CD59. Immunoblot analysis confirmed the presence of these three molecules in normal intraocular fluid. CONCLUSIONS: Our results demonstrate that normal human intraocular fluid (aqueous humor and vitreous) contains complement inhibitory factors. Furthermore, the high-molecular-weight factors appear to be the soluble forms of MCP, DAF, and CD59.


Subject(s)
Antigens, CD/metabolism , Aqueous Humor/physiology , CD55 Antigens/metabolism , CD59 Antigens/metabolism , Complement Inactivator Proteins/physiology , Complement System Proteins/metabolism , Membrane Glycoproteins/metabolism , Vitreous Body/physiology , Chromatography, Gel , Complement Hemolytic Activity Assay , Complement Pathway, Alternative/physiology , Complement Pathway, Classical/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Immunoblotting , Membrane Cofactor Protein , Retinal Diseases/metabolism
3.
Invest Ophthalmol Vis Sci ; 41(11): 3492-502, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11006244

ABSTRACT

PURPOSE: To explore the role of the complement system and complement regulatory proteins in an immune-privileged organ, the eye. METHODS: Eyes of normal Lewis rats were analyzed for the expression of complement regulatory proteins, membrane cofactor protein (MCP), decay-acceleration factor (DAF), membrane inhibitor of reactive lysis (MIRL, CD59), and cell surface regulator of complement (Crry), using immunohistochemistry, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR). Zymosan, a known activator of the alternative pathway of complement system was injected into the anterior chamber of the eye of Lewis rats. Animals were also injected intracamerally with 5 microl (25 microg) of neutralizing monoclonal antibody (mAb) against rat Crry (5I2) or CD59 (6D1) in an attempt to develop antibody induced anterior uveitis; control animals received 5 microl of sterile phosphate-buffered saline (PBS), OX-18 (25 microg), G-16-510E3 (25 microg), or MOPC-21 (25 microg). The role of complement system in antibody-induced uveitis was explored by intraperitoneal injection of 35 U cobra venom factor (CVF), 24 hours before antibody injection. Immunohistochemical staining and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with Western blot analysis were used to detect the presence of membrane attack complex (MAC) and C3 activation products, respectively, in normal and antibody-injected rat eyes. RESULTS: Complement activation product MAC was present in the normal rat eye, and intraocular injection of zymosan induced severe anterior uveitis. The complement regulatory proteins, MCP, DAF, CD59, and Crry, were identified in the normal rat eye. Soluble forms of Crry and CD59 were also detected in normal rat aqueous humor. Severe anterior uveitis developed in Lewis rats injected with a neutralizing mAb against Crry, with increased formation of C3 split products. Systemic complement depletion by CVF prevented the induction of anterior uveitis by anti-Crry mAb. Intracameral injection of anti-rat CD59 (6D1), anti-rat MHC class I antigen (OX-18), anti-rat Ig (G-16-510E3), or MOPC-21 caused no inflammatory reaction. CONCLUSIONS: The results suggest that the complement system is continuously active at a low level in the normal eye and is tightly regulated by intraocular complement regulatory proteins.


Subject(s)
Antigens, CD/biosynthesis , CD55 Antigens/biosynthesis , CD59 Antigens/biosynthesis , Complement Activation , Complement Pathway, Alternative/physiology , Eye/metabolism , Membrane Glycoproteins/biosynthesis , Receptors, Complement/biosynthesis , Animals , Antigens, CD/genetics , Antigens, Surface , Base Sequence , Blotting, Western , CD55 Antigens/genetics , CD59 Antigens/genetics , Complement Hemolytic Activity Assay , DNA Primers/chemistry , Electrophoresis, Polyacrylamide Gel , Immunoenzyme Techniques , Male , Membrane Cofactor Protein , Membrane Glycoproteins/genetics , Molecular Sequence Data , RNA, Messenger/biosynthesis , Rats , Rats, Inbred Lew , Receptors, Cell Surface , Receptors, Complement/genetics , Reverse Transcriptase Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Uveitis, Anterior/chemically induced , Uveitis, Anterior/metabolism , Uveitis, Anterior/pathology , Zymosan/administration & dosage
4.
N Engl J Med ; 332(16): 1058-64, 1995 Apr 20.
Article in English | MEDLINE | ID: mdl-7898523

ABSTRACT

BACKGROUND: Familial hypertrophic cardiomyopathy can be caused by mutations in the genes for beta cardiac myosin heavy chain, alpha-tropomyosin, or cardiac troponin T. It is not known how often the disease is caused by mutations in the tropomyosin and troponin genes, and the associated clinical phenotypes have not been carefully studied. METHODS: Linkage between polymorphisms of the alpha-tropomyosin gene or the cardiac troponin T gene and hypertrophic cardiomyopathy was assessed in 27 families. In addition, 100 probands were screened for mutations in the alpha-tropomyosin gene, and 26 were screened for mutations in the cardiac troponin T gene. Life expectancy, the incidence of sudden death, and the extent of left ventricular hypertrophy were compared in patients with different mutations. RESULTS: Genetic analyses identified only one alpha-tropomyosin mutation, identical to one previously described. Five novel mutations in cardiac troponin were identified, as well as a further example of a previously described mutation. The clinical phenotype of four troponin T mutations in seven unrelated families was similar and was characterized by a poor prognosis (life expectancy, approximately 35 years) and a high incidence of sudden death. The mean (+/- SD) maximal thickness of the left ventricular wall in subjects with cardiac troponin T mutations (16.7 +/- 5.5 mm) was significantly less than that in subjects with beta cardiac myosin heavy-chain mutations (23.7 +/- 7.7 mm, P < 0.001). CONCLUSIONS: Mutations in alpha-tropomyosin are a rare cause of familial hypertrophic cardiomyopathy, accounting for approximately 3 percent of cases. Mutations in cardiac troponin T account for approximately 15 percent of cases of familial hypertrophic cardiomyopathy in this referral-center population. These mutations are characterized by relatively mild and sometimes subclinical hypertrophy but a high incidence of sudden death. Genetic testing may therefore be especially important in this group.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Mutation , Tropomyosin/genetics , Troponin/genetics , Adolescent , Adult , Biomarkers , Genetic Linkage , Humans , Lod Score , Myosins/genetics , Phenotype , Polymorphism, Genetic , Troponin T
SELECTION OF CITATIONS
SEARCH DETAIL
...