Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4523, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941302

ABSTRACT

A simple, novel, and less cost yellow (Erythrosine) modified pencil graphite electrode (Po-ERY/MGPE) was successfully fabricated via electropolymerization method using cyclic voltammetric techniques. The fabricated Po-ERY/MGPE opted as a sensor for the detection of Adrenaline (ADR) in 0.2 M PBS (7.4 pH). This reported senor displayed excellent electrocatalytic activity, increased sensitivity, high stability, superior electron transfer kinetics in the oxidation of ADR once relative to BGPE. The significance of pH, scan rate, and impact of concentration was assessed at the sensor. As per the pH and scan rate study, redox routes carry the same number of electrons and protons, and electro-oxidation of ADR was adsorption controlled respectively. The LOD of ADR was found to be 0.499 µM. The DPV data indicate that there is a significant peak divergence among ADR and uric acid (UA) which could make it easier to determine them alone and simultaneously on the sensor. The described method has been employed for the determination of ADR in injection sample. Good recovery values indicate the efficacy and applicability of the sensor in detecting ADR.


Subject(s)
Epinephrine , Graphite , Erythrosine , Electrochemical Techniques/methods , Electrodes
2.
Sci Rep ; 11(1): 22332, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785686

ABSTRACT

In the present work, Orange CD was chosen as an intriguing modifier for the electropolymerization on the surface of CPE by the CV technique. A novel, sensitive, and cost-effective poly (Orange CD) MCPE (PoOCD/MCPE) sensor was utilized for the selective detection of paracetamol (PA) in 0.2 M phosphate buffer solution (PBS) of pH 7.4. The oxidation peak current of PA was vastly enhanced at the sensor. The scan rate study is suggested that electro-oxidation of PA was adsorption-controlled. The pH study testifies the redox pathways transport with the same quantity of electrons and protons. The detection limit of PA is found to be 2.64 µM. DPV results show that substantial peak separation between PA, folic acid (FA), and dopamine (DA) could be facilitating their individual and simultaneous determination on the sensor. The decorated sensor demonstrates high sensitivity, stability, reproducibility, repeatability and has been successfully exploited for the detection of PA in a tablet with promising results.


Subject(s)
Acetaminophen/analysis , Dopamine/chemistry , Electrochemical Techniques , Folic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...