Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169266, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38086484

ABSTRACT

Cu is a vital micronutrient, but free Cu ions (Cu2+) in seawater, even at subnanomolar concentrations, can impede phytoplankton growth. Natural Cu complexation with organic ligands regulates Cu acquisition and, in most instances, reduces Cu2+ concentrations below toxic thresholds. Along the Antarctic coast, the sources and sinks of Cu and its associated ligands remain poorly defined. Despite the high productivity in the area, there are no studies on the role of trophic transfer in Cu cycling. This study explores penguin guano release of Cu and Cu ligands and its potential in neutralizing copper toxicity along the Antarctic coast. We collected guano in a Chinstrap penguin nesting location in the West coast of Deception Island and extracted its components into aqueous solution imitating natural processes. Copper concentration in guano was 0.4 mg (dry weight g)-1 constituting a potential toxic threat and showed biomagnification with respect to krill. Surface seawater samples collected from various locations varying in penguin activity, were analyzed to assess the potential influence of guano on the area. Visual examination and elevated levels of Al suggested that a substantial portion of guano was lithogenic. Consequently, only a modest 16 % of the total Cu present in guano could be extracted using mechanical methods. Notably, the concentrations of the extracted organic ligands were approximately 23 times higher than the concentrations of the extracted Cu. This significant presence of ligands effectively nullifies any potential toxicity that could have arisen from free Cu2+ ions. Guano ligands' conditional stability constants were lower than those in surface seawater suggesting phytoplankton exudation was the main ligand source in the area. Overall, guano acts as a key node for Cu cycling in coastal Antarctic waters but its deleterious potential is neutralized by ligands from krill digestion and the high background concentration of phytoplankton exudates.


Subject(s)
Spheniscidae , Trace Elements , Animals , Copper , Antarctic Regions , Phytoplankton , Ions
2.
Sci Total Environ ; 865: 161182, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36584442

ABSTRACT

We surveyed macronutrients and dissolved iron (DFe) concentrations and speciation in a transect over the shelf of the South Brazil Bight (SBB) at Santa Marta Grande Cape (SE Brazil) during a coastal downwelling episode. Driven by dominant NE winds, coastal downwelling is a common feature during the austral summer and force after water convergence, with contribution of internal wave breaking at the shelf edge, upwelling of macronutrients into the nutrient-depleted waters of the southbound Brazil Current at ~100 km from the coastline. As a result, we found a plume of high turbidity that reached the euphotic layer, a deepening of the silicate, nitrate, and phosphate isolines over the shelf and a bulging of the nitrate and phosphate isolines over the shelf edge and the slope. Our first measurements of DFe concentration and speciation in the area revealed that against prior findings in other coastal areas, macronutrients, DFe, and iron ligand cycles were disentangled. Higher DFe concentrations were often found at the surface indicating aerial deposition. Secondary DFe maxima over the sediment-water interface and in the upwelled plume indicated DFe fluxes from the sediment and from resuspended instable colloids. Iron ligand concentrations were higher than DFe concentrations in most stations with a clear land-to-ocean gradient. Subtraction of HS iron ligands revealed that except in upwelled water, the bulk of surface ligands was the result of local biological processes. The analysis of the concentrations of Fe-HS complexes showed that the contribution of HS to DFe was dominant in upwelled waters, significant in waters close to the coast, but nearly negligible in the rest of the studied area. We hypothesize that the injection of iron-humic complexes into the euphotic layer during summer upwelling episodes is the key to understanding the persistent high chlorophyll meanders found over the shelf edge of the SBB coast.

3.
Environ Sci Technol ; 53(22): 13136-13145, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31638387

ABSTRACT

One of the main reasons behind our current lack of understanding of iron cycling in the oceans is our inability to characterize the ligands that control iron solubility, photosensitivity, reactivity, and bioavailability. We currently lack consensus about the nature and origin of these ligands. Here, we present the first field application of a new methodological development that allows the selective quantification of the fraction of Fe complexed to humic substances (HS). In the HS-rich surface Arctic waters, including the Fe-rich Transpolar Drift (TPD), we found that HS iron binding groups were largely occupied by iron (49%). The overall contribution of Fe-HS complexes to DFe concentrations was substantial at 80% without significant differences between TPD and non-TPD waters. Stabilization and transport of large concentrations of DFe across the surface of the Arctic Ocean are due to the formation of high concentrations of Fe-HS complexes. Competition of Arctic Fe-HS complexes with desferrioxamine and EDTA indicated that their stability constants are considerably higher than the stability constants previously found for riverine HS in temperate estuaries and HS standard material. This is the first case of identification of the ligand-dominating iron speciation over a specific region of the global ocean.


Subject(s)
Humic Substances , Iron , Arctic Regions , Oceans and Seas , Solubility
4.
Talanta ; 189: 359-364, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30086931

ABSTRACT

Improving our understanding of iron cycling in ocean waters is one of the most challenging tasks in oceanographic studies and requires new analytical strategies. The low solubility of inorganic iron in oxygen saturated waters is increased by organic complexation with a variety of natural ligands, the nature of which is a topic of debate. Electrochemical methods are important for speciation studies since they allow direct measurement of iron complexes at limits of detection below iron concentrations in ocean waters. Most of the natural iron ligands do not form electrolabile iron complexes with working electrodes currently in use. Humic substances are the exception as their iron complexes can be detected by cathodic voltammetry if a strong oxidant such as bromate is added for a catalytic reoxidation of iron. Here we propose a rearrangement and extension of the original analytical protocol (Laglera et al., 2007) [1]. Firstly, the humic standard prepared in ultrapure water is carefully saturated with iron before use, preventing underestimation of the iron-humic complexes during calibration. Secondly, before starting the common voltammetric analysis under iron saturation, extra voltammograms are collected at the natural iron concentration. We demonstrate that this rearrangement permits the determination of the percentage of iron-binding groups of humic substances in the sample that were originally bound to iron. After calibration, the concentration of iron present in the sample as humic complexes can be quantified. This is the first analytical development leading to the quantification of the contribution of a determined type of natural ligands to the organic speciation of iron in seawater. As a proof of concept we measured the concentration of Fe-HS complexes in Arctic Ocean waters characterized by a high content in terrigenous organic matter. We corroborated the importance of humic substances in the lateral transport of high concentrations of iron from the Arctic Ocean into the North Atlantic Ocean.

SELECTION OF CITATIONS
SEARCH DETAIL
...