Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(26): 12582-12588, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31231735

ABSTRACT

Multilayer hyperbolic metamaterials (HMMs) are highly anisotropic media consisting of alternating metal and dielectric layers with their electromagnetic properties defined by the effective medium approximation (EMA). EMA is generally applied for a large number of subwavelength unit cells or periods of a multilayer HMM. However, in practice, the number of periods is limited. To the best of our knowledge, a comparison between rigorous theory, EMA and experiments to investigate the minimum number of layers that allow for the low error of EMA results has not yet been investigated. In this article, we compared the reflectance response of the effective anisotropic HMMs predicted by the scattering matrix method (SMM) and EMA with optical characterization data, having the unit cell twenty times smaller than the vacuum wavelength in the visible range. The fabricated HMM structures consist of up to ten periods of alternating 10 nm thick Au and Al2O3 layers deposited by sputtering and atomic layer deposition, respectively. The two deposition techniques enable us to achieve a high quality HMM with low roughness: the root mean square (RMS) is less than 1 nm. We showed that the multilayer structure behaves like an effective medium from the fourth period onwards as the EMA calculation and experimental results agree well having below 4% mean square standard deviation of reflectance (MSDR) for the wavelength range from 500 to 1750 nm with a wide incident angle range. These results could have an impact on the design and development of active metamaterials and their applications ranging from imaging to nonlinear optics and sensing.

2.
Opt Lett ; 43(19): 4602-4605, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272693

ABSTRACT

The photonic spin Hall effect in transmission is a transverse beam shift of the out-coming beam depending on polarization of the incoming beam. The effect can be significantly enhanced by materials with high anisotropy. We report, to the best of our knowledge, the first experimental demonstration of the photonic spin Hall effect in a multilayer hyperbolic metamaterial at visible wavelengths (wavelengths of 520 and 633 nm). The metamaterial is composed of alternating layers of gold and alumina with deeply subwavelength thicknesses, exhibiting extremely large anisotropy. The angle-resolved polarimetric measurements showed the shift of 165 µm for the metamaterial of 176 nm in thickness. Additionally, the transverse beam shift is extremely sensitive to the variations of the incident angle changing theoretically by 270 µm with 1 milli-radian (0.057°). These features can lead to minituarized spin Hall switches and filters with high angular resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...