Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794315

ABSTRACT

Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.

2.
Biosensors (Basel) ; 14(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38248420

ABSTRACT

Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides. The RAD51 protein plays a central role in DNA repair via the homologous recombination pathway. This recombinase is essential for the genome stability and its overexpression is often correlated with aggressive cancer. RAD51 is therefore a potential target in the therapeutic strategy for cancer. Here, we report the designing of a PC-based array sensor for real-time monitoring of oligonucleotide-RAD51 recruitment by means of surface mode imaging and validation of the concept of this approach. Our data demonstrate that the designed biosensor ensures the highly sensitive multiplexed analysis of association-dissociation events and detection of the biomarker of DNA damage using a microfluidic PC array. The obtained results highlight the potential of the developed technique for testing the functionality of candidate drugs, discovering new molecular targets and drug entities. This paves the way to further adaption and bioanalytical use of the biosensor for high-content screening to identify new DNA repair inhibitor drugs targeting the RAD51 nucleoprotein filament or to discover new molecular targets.


Subject(s)
Antibodies , Neoplasms , Humans , Diagnostic Imaging , Biomarkers, Tumor , DNA Repair , DNA, Single-Stranded , Oligonucleotides , Rad51 Recombinase
3.
Article in English | MEDLINE | ID: mdl-37917654

ABSTRACT

Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 µm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.

4.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299650

ABSTRACT

Fluorescent hydrogels are promising candidate materials for portable biosensors to be used in point-of-care diagnosis because (1) they have a greater capacity for binding organic molecules than immunochromatographic test systems, determined by the immobilization of affinity labels within the three-dimensional hydrogel structure; (2) fluorescent detection is more sensitive than the colorimetric detection of gold nanoparticles or stained latex microparticles; (3) the properties of the gel matrix can be finely tuned for better compatibility and detection of different analytes; and (4) hydrogel biosensors can be made to be reusable and suitable for studying dynamic processes in real time. Water-soluble fluorescent nanocrystals are widely used for in vitro and in vivo biological imaging due to their unique optical properties, and hydrogels based on these allow the preservation of these properties in bulk composite macrostructures. Here we review the techniques for obtaining analyte-sensitive fluorescent hydrogels based on nanocrystals, the main methods used for detecting the fluorescent signal changes, and the approaches to the formation of inorganic fluorescent hydrogels via sol-gel phase transition using surface ligands of the nanocrystals.

5.
Pharmaceutics ; 15(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36986807

ABSTRACT

Multiplexed fluorescent immunohistochemical analysis of breast cancer (BC) markers and high-resolution 3D immunofluorescence imaging of the tumor and its microenvironment not only facilitate making the disease prognosis and selecting effective anticancer therapy (including photodynamic therapy), but also provides information on signaling and metabolic mechanisms of carcinogenesis and helps in the search for new therapeutic targets and drugs. The characteristics of imaging nanoprobe efficiency, such as sensitivity, target affinity, depth of tissue penetration, and photostability, are determined by the properties of their components, fluorophores and capture molecules, and by the method of their conjugation. Regarding individual nanoprobe components, fluorescent nanocrystals (NCs) are widely used for optical imaging in vitro and in vivo, and single-domain antibodies (sdAbs) are well established as highly specific capture molecules in diagnostic and therapeutic applications. Moreover, the technologies of obtaining functionally active sdAb-NC conjugates with the highest possible avidity, with all sdAb molecules bound to the NC in a strictly oriented manner, provide 3D-imaging nanoprobes with strong comparative advantages. This review is aimed at highlighting the importance of an integrated approach to BC diagnosis, including the detection of biomarkers of the tumor and its microenvironment, as well as the need for their quantitative profiling and imaging of their mutual location, using advanced approaches to 3D detection in thick tissue sections. The existing approaches to 3D imaging of tumors and their microenvironment using fluorescent NCs are described, and the main comparative advantages and disadvantages of nontoxic fluorescent sdAb-NC conjugates as nanoprobes for multiplexed detection and 3D imaging of BC markers are discussed.

6.
Int J Mol Sci ; 24(5)2023 02 22.
Article in English | MEDLINE | ID: mdl-36901779

ABSTRACT

High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Antibodies , Proteins , Microfluidic Analytical Techniques/methods
7.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014600

ABSTRACT

Semiconductor nanocrystals known as quantum dots (QDs) are of great interest for researchers and have potential use in various applications in biomedicine, such as in vitro diagnostics, molecular tracking, in vivo imaging, and drug delivery. Systematic analysis of potential hazardous effects of QDs is necessary to ensure their safe use. In this study, we obtained water-soluble core/shell QDs differing in size, surface charge, and chemical composition of the core. All the synthesized QDs were modified with polyethylene glycol derivatives to obtain outer organic shells protecting them from degradation. The physical and chemical parameters were fully characterized. In vitro cytotoxicity of the QDs was estimated in both normal and tumor cell lines. We demonstrated that QDs with the smallest size had the highest in vitro cytotoxicity. The most toxic QDs were characterized by a low negative surface charge, while positively charged QDs were less cytotoxic, and QDs with a greater negative charge were the least toxic. In contrast, the chemical composition of the QD core did not noticeably affect the cytotoxicity in vitro. This study provides a better understanding of the influence of the QD parameters on their cytotoxicity and can be used to improve the design of QDs.

8.
Biomater Sci ; 10(18): 5092-5115, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35894444

ABSTRACT

The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Capsules/chemistry , Drug Delivery Systems , Humans , Neoplasms/drug therapy , Polymers/chemistry , Structure-Activity Relationship
9.
Biosensors (Basel) ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35624601

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.


Subject(s)
COVID-19 , Spectrum Analysis, Raman , Antigens, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2 , Silver/chemistry , Spectrum Analysis, Raman/methods , Spike Glycoprotein, Coronavirus
10.
Polymers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883579

ABSTRACT

Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface charge, size, rigidity, and functional properties. Here, we report on the engineering and validation of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PEGylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcapsules with controlled photoluminescence properties, and pave the way for the further development of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.

11.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34835819

ABSTRACT

The engineering of delivery systems for drugs and contrasting labels ensuring the simultaneous imaging and treatment of malignant tumors is an important hurdle in developing new tools for cancer therapy and diagnosis. Polyelectrolyte microcapsules (MCs), formed by nanosized interpolymer complexes, represent a promising platform for the designing of multipurpose agents, functionalized with various components, including high- and low-molecular-weight substances, metal nanoparticles, and organic fluorescent dyes. Here, we have developed size-homogenous MCs with different structures (core/shell and shell types) and microbeads containing doxorubicin (DOX) as a model anticancer drug, and fluorescent semiconductor nanocrystals (quantum dots, QDs) as fluorescent nanolabels. In this study, we suggest approaches to the encapsulation of DOX at different stages of the MC synthesis and describe the optimal conditions for the optical encoding of MCs with water-soluble QDs. The results of primary characterization of the designed microcarriers, including particle analysis, the efficacy of DOX and QDs encapsulation, and the drug release kinetics are reported. The polyelectrolyte MCs developed here ensure a modified (prolonged) release of DOX, under conditions close to normal and tumor tissues; they possess a bright fluorescence that paves the way to their exploitation for the delivery of antitumor drugs and fluorescence imaging.

12.
Methods Mol Biol ; 2350: 105-123, 2021.
Article in English | MEDLINE | ID: mdl-34331282

ABSTRACT

Early detection of malignant tumors, micrometastases, and disseminated tumor cells is one of the effective way of fighting cancer. Among the many existing imaging methods like computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), optical imaging with fluorescent probes is one of the most promising alternatives because it is fast, inexpensive, safe, sensitive, and specific. However, traditional fluorescent probes, based on organic fluorescent dyes, suffer from the low signal-to-noise ratio. Furthermore, conventional organic fluorescent dyes are unsuitable for deep tissue imaging because of the strong visible light absorption by biological tissues. The use of fluorescent semiconductor nanocrystals, or quantum dots (QDs), may overcome this limitation due to their large multiphoton cross section, which ensures efficient imaging of thick tissue sections inaccessible with conventional fluorescent probes. Moreover, the lower photobleaching and higher brightness of fluorescence signals from QDs ensures a much better discrimination of positive signals from the background. The use of fluorescent nanoprobes based on QDs conjugated to uniformly oriented high-affinity single-domain antibodies (sdAbs) may significantly increase the sensitivity and specificity due to better recognition of analytes and deeper penetration into tissues due to small size of such nanoprobes.Here, we describe a protocol for the fabrication of nanoprobes based on sdAbs and QDs, preparation of experimental xenograft mouse models for quality control, and multiphoton imaging of deep-tissue solid tumors, micrometastases, and disseminated tumor cells.


Subject(s)
Fluorescent Antibody Technique/methods , Microscopy, Fluorescence, Multiphoton/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Quantum Dots , Single-Domain Antibodies , Cell Line, Tumor , Fluorescent Antibody Technique/standards , Humans , Immunoconjugates/chemistry , Immunohistochemistry/methods , Molecular Probes , Multimodal Imaging/methods , Nanoparticles , Neoplasm Micrometastasis , Optical Imaging/methods
13.
ACS Appl Mater Interfaces ; 12(32): 35882-35894, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32663390

ABSTRACT

The layer-by-layer (LbL) deposition approach allows combined incorporation of fluorescent, magnetic, and plasmonic nanoparticles into the shell of polyelectrolyte microcapsules to obtain stimulus-responsive systems whose imaging and drug release functions can be triggered by external stimuli. The combined use of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) yields magnetic-field-driven imaging tools that can be tracked and imaged even deep in tissue when the appropriate type of QDs and wavelength of their excitation are used. QDs are excellent photonic labels for microcapsule encoding due to their close-to-unity photoluminescence (PL) quantum yields, narrow PL emission bands, and tremendous one- and two-photon extinction coefficients. However, the presence of MNPs and electrically charged polyelectrolyte molecules used for the LbL fabrication of magneto-optical microcapsules provokes alterations of the QD optical properties because of the photoinduced charge and energy transfer resulting in QD photodarkening or photobrightening. These lead to variation of the microcapsule PL signal under illumination, which hampers their tracking and quantitative analysis in cells and tissues. Here, we have studied the effects of the structure and spatial arrangement of the nanoparticles within the microcapsule polyelectrolyte shell, the total shell thickness, and the shell surface charge on their PL properties under continuous illumination. The roles of the charge transfer and its main driving forces in the stability of the microcapsules PL signal have been established, and the design of the microcapsules dually encoded with QDs and MNPs providing the strongest and most stable PL has been determined. Controlling the energy transfer from the QDs and MNPs and the charge transfer from QDs to polyelectrolyte layers in the engineering of magneto-optical microcapsules with a bright and stable PL signal extends their applications to long-lasting quantitative fluorescence imaging.

14.
Methods Mol Biol ; 2135: 199-212, 2020.
Article in English | MEDLINE | ID: mdl-32246336

ABSTRACT

Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), and magnetic nanoparticles (MNPs) are extensively studied perspective tools for optical (fluorescence) and magnetic resonance imaging techniques. The unique optical properties, high photostability, and bright luminescence of QDs make them more promising fluorophores than the classical organic dyes. Encoding polyelectrolyte microcapsules with QDs and MNPs ensures their sensitivity to both photoexcitation and magnetic field. This chapter presents the protocol for obtaining a stimulus-sensitive delivery system based on QD- and MNP-encoded polyelectrolyte microcapsules by means of layer-by-layer self-assembly. The resultant fluorescent magnetic polyelectrolyte microcapsules are 3.4-5.5 µm in size, have a hollow structure, and are brightly fluorescent to be detected with the standard imaging equipment. Polyelectrolyte microcapsule surface bears functional groups for subsequent functionalization with vector capture molecules. The polyelectrolyte microcapsules containing combination of QDs and MNPs are advanced visualization tools, since they can be sorted in a magnetic field and at the same time are suitable for fluorescent imaging what can be applied within a wide range of diagnostic and therapeutic protocols.


Subject(s)
Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Quantum Dots/chemistry , Animals , Capsules/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Humans , Magnetics/methods , Nanoparticles/chemistry
15.
Methods Mol Biol ; 2135: 225-236, 2020.
Article in English | MEDLINE | ID: mdl-32246338

ABSTRACT

A quantum dot (QD)-based lab-on-bead system is a unique tool for multiple analysis of cancer markers in human serum samples by using a flow cytometer. In terms of specificity and sensitivity, this method is comparable with ELISA, the "gold standard" of serological in-clinic detection of single analytes. Fluorescent microspheres encoded with QDs have been used for the quantitative detection of free and total prostate-specific antigen in human serum samples. Developed multiplex assay demonstrates a clear discrimination between serum samples from control subjects and cancer patients. The proposed QD-based method is adaptable and makes it possible to develop numerous clinical tests with decreased duration and cost for early diagnosis of various diseases.


Subject(s)
Molecular Diagnostic Techniques/methods , Neoplasms/immunology , Quantum Dots/chemistry , Antigens, Neoplasm/analysis , Antigens, Neoplasm/immunology , Biomarkers, Tumor/analysis , Flow Cytometry/methods , Fluorescent Dyes , Humans , Lab-On-A-Chip Devices , Microspheres , Neoplasms/diagnosis , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/immunology
16.
Methods Mol Biol ; 2135: 259-273, 2020.
Article in English | MEDLINE | ID: mdl-32246341

ABSTRACT

Antibody microarrays have become a powerful tool in multiplexed immunoassay technologies. The advantage of microarray technology is the possibility of rapid analysis of multiple targets in a single sample with a high sensitivity, which makes them ideal for high throughput screening. Usually these microarrays contain biological recognition molecules, such as full-size antibodies, antigen-binding fragments, and single-domain antibodies, and a label for detection. Organic fluorophores are the most popular labels, but they suffer from low sensitivity and instability due to their photodegradation. Here, we describe a protocol for fabricating an antibody microarray with highly fluorescent semiconductor nanocrystals or quantum dots (QDs) as the source of fluorescent signals, which may significantly improve the properties of microarrays, including their sensitivity and specificity. Our approach to analyte detection is based on the use of sandwich approach with streptavidin-biotin to assess and monitor the fluorescence signal instead of direct labeling of samples, which helps improve the reproducibility of results and sensitivity of the microarrays. The antibody microarray developed has been tested for its capacity of detecting DNA-PKcs in glial cell lines and measuring cell protein phosphorylation changes caused by camptothecin-induced DNA damage with different protein kinase inhibitors in HeLa cells.


Subject(s)
Protein Array Analysis/methods , Quantum Dots/chemistry , Antibodies/immunology , Biotin/chemistry , Fluorescent Dyes/chemistry , HeLa Cells , High-Throughput Screening Assays , Humans , Immunoassay/methods , Microarray Analysis/methods , Reproducibility of Results , Sensitivity and Specificity , Streptavidin/chemistry
17.
Sci Rep ; 10(1): 653, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959852

ABSTRACT

Semiconductor quantum dots (QDs) embedded into polymer microbeads are known to be very attractive emitters for spectral multiplexing and colour encoding. Their luminescence lifetimes or decay kinetics have been, however, rarely exploited as encoding parameter, although they cover time ranges which are not easily accessible with other luminophores. We demonstrate here the potential of QDs made from II/VI semiconductors with luminescence lifetimes of several 10 ns to expand the lifetime range of organic encoding luminophores in multiplexing applications using time-resolved flow cytometry (LT-FCM). For this purpose, two different types of QD-loaded beads were prepared and characterized by photoluminescence measurements on the ensemble level and by single-particle confocal laser scanning microscopy. Subsequently, these lifetime-encoded microbeads were combined with dye-encoded microparticles in systematic studies to demonstrate the potential of these QDs to increase the number of lifetime codes for lifetime multiplexing and combined multiplexing in the time and colour domain (tempo-spectral multiplexing). These studies were done with a recently developed novel luminescence lifetime flow cytometer (LT-FCM setup) operating in the time-domain, that presents an alternative to reports on phase-sensitive lifetime detection in flow cytometry.

18.
Front Chem ; 7: 480, 2019.
Article in English | MEDLINE | ID: mdl-31417892

ABSTRACT

Nanoparticles attract much interest as fluorescent labels for diagnostic and therapeutic tools, although their applications are often hindered by size- and shape-dependent cytotoxicity. This cytotoxicity is related not only to the leak of toxic metals from nanoparticles into a biological solution, but also to molecular cytotoxicity effects determined by the formation of a protein corona, appearance of an altered protein conformation leading to exposure of cryptic epitopes and cooperative effects involved in the interaction of proteins and peptides with nanoparticles. In the last case, nanoparticles may serve, depending on their nature, as centers of self-association or fibrillation of proteins and peptides, provoking amyloid-like proteinopathies, or as inhibitors of self-association of proteins, or they can self-assemble on biopolymers as on templates. In this study, human insulin protein was used to analyze nanoparticle-induced proteinopathy in physiological conditions. It is known that human insulin may form amyloid fibers, but only under extreme experimental conditions (very low pH and high temperatures). Here, we have shown that the quantum dots (QDs) may induce amyloid-like fibrillation of human insulin under physiological conditions through a complex process strongly dependent on the size and surface charge of QDs. The insulin molecular structure and fibril morphology have been shown to be modified at different stages of its fibrillation, which has been proved by comparative analysis of the data obtained using circular dichroism, dynamic light scattering, amyloid-specific thioflavin T (ThT) assay, transmission electron microscopy, and high-speed atomic force microscopy. We have found important roles of the QD size and surface charge in the destabilization of the insulin structure and the subsequent fibrillation. Remodeling of the insulin secondary structure accompanied by remarkable increase in the rate of formation of amyloid-like fibrils under physiologically normal conditions was observed when the protein was incubated with QDs of exact specific diameter coated with slightly negative specific polyethylene glycol (PEG) derivatives. Strongly negatively or slightly positively charged PEG-modified QDs of the same specific diameter or QDs of bigger or smaller diameters had no effect on insulin fibrillation. The observed effects pave the way to the control of amyloidosis proteinopathy by varying the nanoparticle size and surface charge.

19.
Mater Sci Eng C Mater Biol Appl ; 102: 405-414, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31147011

ABSTRACT

Graphene is one of the crystalline forms of carbon, along with diamond, graphite, carbon nanotubes, and fullerenes, and is considered as a revolutionary and innovating product. The use of a graphene-based nanolabels is one of the latest and most prominent application of graphene, especially in the field of diagnosis and, recently, in loco radiotherapy when coupled with radioisotopes. However, its biological behavior and mutagenicity in different cell or animal models, as well as the in vivo functional activities, are still unrevealed. In this study we have developed by a green route of synthesizing graphene quantum dots (GQDs) and characterized them. We have also developed a methodology for direct radiolabeling of GQDs with radioisotopes.Finally; we have evaluated in vivo biological behavior of GQDs using two different mice models and tested in vitro mutagenicity of GQDs. The results have shown that GQDs were formed with a size range of 160-280 nm, which was confirmed by DRX and Raman spectroscopy analysis, corroborating that the green synthesis is an alternative, environmentally friendly way to produce graphene. The radiolabeling test has shown that stable radiolabeled GQDs can be produced with a high yield (>90%). The in vivo test has demonstrated a ubiquitous behavior when administered to healthy animals, with a high uptake by liver (>26%) and small intestine (>25%). Otherwise, in an inflammation/VEGF hyperexpression animal model (endometriosis), a very peculiar behavior of GQDs was observed, with a high uptake by kidneys (over 85%). The mutagenicity test has demonstrated A:T to G:C substitutions suggesting that GQDs exhibits mutagenic activity.


Subject(s)
Graphite/chemistry , Green Chemistry Technology/methods , Mutagens/toxicity , Quantum Dots/chemistry , Radiopharmaceuticals/chemistry , Technetium/chemistry , Animals , Dynamic Light Scattering , Female , Male , Mice, Inbred BALB C , Neovascularization, Physiologic , Optical Phenomena , Particle Size , Rats, Wistar , Spectrum Analysis, Raman , Tissue Distribution , X-Ray Diffraction
20.
Sci Rep ; 9(1): 8745, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217478

ABSTRACT

Circulating cancer markers are metabolic products found in body fluids of cancer patients, which are specific for a certain type of malignant tumors. Cancer marker detection plays a key role in cancer diagnosis, treatment, and disease monitoring. The growing need for early cancer diagnosis requires quick and sensitive analytical approaches to detection of cancer markers. The approach based on the photonic crystal surface mode (PC SM) detection has been developed as a label-free high-precision biosensing technique. It allows real-time monitoring of molecular and cellular interactions using independent recording of the total internal reflection angle and the excitation angle of the PC surface wave. We used the PC SM technique for simultaneous detection of the ovarian cancer marker cancer antigen 125 and two breast cancer markers, human epidermal growth factor receptor 2 and cancer antigen 15-3. The new assay is based on the real-time flow detection of specific interaction between the antigens and capture antibodies. Its particular advantage is the possibility of multichannel recording with the same chip, which can be used for multiplexed detection of several cancer markers in a single experiment. The developed approach demonstrates high specificity and sensitivity for detection of all three biomarkers.


Subject(s)
Biomarkers, Tumor/blood , Biosensing Techniques , Breast Neoplasms , CA-125 Antigen/blood , Early Detection of Cancer , Ovarian Neoplasms , Receptor, ErbB-2/blood , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Female , Humans , Ovarian Neoplasms/blood , Ovarian Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...