Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(10): 1488-1503, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38105019

ABSTRACT

Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.


Subject(s)
Photosynthesis , Proton-Translocating ATPases , Cell Membrane/metabolism , Proton-Translocating ATPases/metabolism , Chloroplasts/metabolism , Plant Leaves/metabolism , Plants/metabolism
2.
J Exp Bot ; 72(15): 5534-5552, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33974689

ABSTRACT

In mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C. The regulation of plasmodesmata permeability in these lines could not be traced back to the reduction state of the thioredoxin system or the types and levels of reactive oxygen species produced in chloroplasts; however, it could be related to chloroplast ATP and NADPH production. The results suggest that light enables plasmodesmata closure via an increase in the ATP and NADPH levels produced in photosynthesis, providing a control mechanism for assimilate export based on the rate of photosynthate production in the Calvin-Benson cycle. The level of chlorophyll b influences plasmodesmata permeability via as-yet-unidentified signals. The data also suggest a role of thioredoxin m3 in the regulation of cyclic electron flow around photosystem I.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , NADP/metabolism , Oxidation-Reduction , Photosynthesis , Plant Leaves/metabolism , Plasmodesmata/metabolism
3.
Funct Plant Biol ; 45(2): 236-246, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291038

ABSTRACT

Long-distance communications in giant characean internodal cells involve cytoplasmic streaming as an effective means for transportation of regulatory substances. The local illumination of Chara corallina Klein ex C.L.Willdenow internodal cells with an intense 30s pulse of white light caused a transient increase of modulated chlorophyll fluorescence in cell regions positioned downstream the cytoplasmic flow after a delay whose duration increased with the axial distance from the light source. No changes in fluorescence were observed in cell regions residing upstream of the light spot. The transient increase in actual fluorescence F' in cell areas exposed to constant dim illumination at large distances from the brightly lit area indicates the transmission of photosynthetically active metabolite between chloroplasts separated by 1-5mm distances. The shapes of fluorescence transients were sensitive to retardation of cytoplasmic streaming by cytochalasin D and to variations in cyclosis velocity during gradual recovery of streaming after an instant arrest of cyclosis by elicitation of the action potential. Furthermore, the analysed fluorescence transients were skewed on the ascending or descending fronts depending on the position of light-modulated cytoplasmic package at the moment of streaming cessation with respect to the point of measurements. The observations are simulated in qualitative terms with a simplified streaming-diffusion model.

4.
Int J Mol Sci ; 18(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182594

ABSTRACT

The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.


Subject(s)
Cobalt/chemistry , Porphyrins/chemistry , Animals , Boron/chemistry , Boron Neutron Capture Therapy , Carcinoma/therapy , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Photochemotherapy/methods , Photosensitizing Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...