Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(13): 9313-9320, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37269328

ABSTRACT

Design and synthesis of orthogonally protected monosaccharide building blocks are crucial for the preparation of well-defined oligosaccharides in a stereo- and regiocontrolled manner. Selective introduction of protecting groups to partially protected monosaccharides is nontrivial due to the often unpredictable electronic, steric, and conformational effects of the substituents. Abolished reactivity toward a commonly used Lewis base-catalyzed acylation of O-2 was observed in conformationally restricted 4,6-O-benzylidene-3-O-Nap galactoside. Investigation of analogous systems, crystallographic characterization, and quantum chemical calculations highlighted the overlooked conformational and steric considerations, the combination of which produces a unique passivity of the 2-OH nucleophile. Evaluating the role of electrophile counterion and auxiliary base in the acylation of the sterically crowded and conformationally restricted galactoside system revealed an alternative Brønsted base-driven reaction pathway via nucleophilic activation. Insights gained from this model system were utilized to access the target galactoside intermediate within the envisioned synthetic route. The acylation strategy described herein can be implemented in future syntheses of key monomeric building blocks with unique protecting group hierarchies.


Subject(s)
Galactosides , Galactosides/chemistry , Indicators and Reagents , Acylation
2.
Chem Commun (Camb) ; 58(80): 11256-11259, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36111607

ABSTRACT

Optimization of glycosylation conditions for automated glycan assembly is highly challenging, demands wasteful use of precious building blocks, and relies on nontrivial analyses. We developed a semi-quantitative method for automated optimization of glycosylation temperature that utilized minute quantities of donors and translated those conditions to solid-phase glycan assembly.


Subject(s)
Polysaccharides , Glycosylation
3.
Langmuir ; 38(2): 849-855, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34989586

ABSTRACT

Sensing enzymatic sialylation provides new tools for the evaluation of pathological events and pathogen invasion. Enzymatic sialylation is usually monitored via fluorescence or metabolic labeling, which requires relatively large amounts of the glycan substrate with limited availability. Using a label-free biosensor requires smaller quantities of substrates because the interactions induce measurable changes to an interface, which can be translated into a signal. The downside of label-free biosensors is that they are very sensitive to changes at the interface, and the properties of the surface layer can play a major role. Electrochemical impedance spectroscopy was used here to follow the enzymatic sialylation of a biantennary N-glycan acceptor in mixed monolayers. The surfaces contained either neutral, positively or negatively charged, or zwitterionic functional groups. The systems were characterized by contact potential difference, ellipsometry, and contact angle analyses. We found that the characteristics of the mixed monolayer have a profound effect on the biosensing of the enzymatic sialylation. Positively charged layers were found to adsorb the enzyme under the reaction conditions. Negatively charged and zwitterionic surfaces were nonresponsive to enzymatic sialylation. Only the neutral mixed monolayers provided signals that were related directly to enzymatic sialylation. This work demonstrates the importance of appropriate interface properties for monitoring enzymatic sialylation processes.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Polysaccharides
4.
Biosens Bioelectron ; 172: 112762, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33142198

ABSTRACT

Sialylated glycans and glycoproteins are involved in cellular communication and are crucial for distinguishing between signal pathways. Sialylation levels and patterns modulate recognition events and are regulated by the enzymatic activity of sialyltransferases and neuraminidases. Abnormal activity of these enzymes is related to diseases such as cancer and viral infection. Monitoring these enzymatic activities offers valuable diagnostic tools. This work presents an impedimetric biosensing platform for following and detecting sialylation and desialylation processes. This platform is based on a native biantennary N-glycan substrate attached to a glassy carbon electrode. Changes in the molecular layer, as a result of enzymatic reactions, were detected by electrochemical impedance spectroscopy, displaying high sensitivity to the enzymatic surface reactions. Increase in the molecular layer roughness in response to the sialylation was visualized using atomic force microscopy. After enzymatic sialylation, the presence of sialic acid was confirmed using cyclic voltammetry by coupling of the redox active marker aminoferrocene. The sialylation showed selectivity toward the N-glycan compared to another glycan substrate. A time dependent sialylation was followed by electrochemical impedance spectroscopy, proving that the new system can be applied to evaluate the enzymatic kinetics. Our findings suggest that analyzing sialylation processes using this platform can become a useful tool for the detection of pathological states and pathogen invasion.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , N-Acetylneuraminic Acid , Polysaccharides , Sialyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...