Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 13(1): 171, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27756316

ABSTRACT

BACKGROUND: Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the αVß6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the capsid protein VP1 detected in all studied clinical isolates. However, genetically-modified CV-A9 that lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell lines but not in A549, suggesting that RGD-mediated integrin binding is not always essential for efficient entry of CV-A9. METHODS: Two cell lines, A549 and SW480, were used in the study. SW480 was the study object for the integrin-independent entry and A549 was used as the control for integrin-dependent entry. Receptor levels were quantitated by cell sorting and quantitative PCR. Antibody blocking assay and siRNA silencing of receptor-encoding genes were used to block virus infection. Peptide phage display library was used to identify peptide binders to CV-A9. Immunofluorescence and confocal microscopy were used to visualize the virus infection in the cells. RESULTS: We investigated the receptor use and early stages of CV-A9 internalization to SW480 human epithelial colon adenocarcinoma cells. Contrary to A549 infection, we showed that both CV-A9 and CV-A9-RGDdel internalized into SW480 cells and that function-blocking anti-αV integrin antibodies had no effect on the binding and entry of CV-A9. Whereas siRNA silencing of ß6 integrin subunit had no influence on virus infection in SW480, silencing of ß2-microglobulin (ß2M) inhibited the virus infection in both cell lines. By using a peptide phage display screening, the virus-binding peptide identical to the N-terminal sequence of HSPA5 protein was identified and shown to block the virus infection in both A549 and SW480 cell lines. HSPA5 was also found to co-localize with CV-A9 at the SW480 cell periphery during the early stages of infection by confocal microscopy. CONCLUSIONS: The data suggest that while αVß6 integrin is essential for CV-A9 in A549 cell line, it is not required in SW480 cell line in which ß2M and HSPA5 alone are sufficient for CV-A9 infection. This suggests that the choice of CV-A9 receptor(s) is dependent on the tissue/cellular environment.


Subject(s)
Antigens, Neoplasm/metabolism , Enterovirus B, Human/physiology , Epithelial Cells/virology , Host-Pathogen Interactions , Integrins/metabolism , Receptors, Virus/metabolism , Virus Internalization , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...