Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 44(2): 238-49, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26608080

ABSTRACT

Organic cation transporter (OCT) 2, multidrug and toxin extrusion protein (MATE) 1, and MATE2K mediate the renal secretion of various cationic drugs and can serve as the loci of drug-drug interactions (DDI). To support the evaluation of cynomolgus monkey as a surrogate model for studying human organic cation transporters, monkey genes were cloned and shown to have a high degree of amino acid sequence identity versus their human counterparts (93.7, 94.7, and 95.4% for OCT2, MATE1, and MATE2K, respectively). Subsequently, the three transporters were individually stably expressed in human embryonic kidney (HEK) 293 cells and their properties (substrate selectivity, time course, pH dependence, and kinetics) were found to be comparable to the corresponding human form. For example, six known human cation transporter inhibitors, including pyrimethamine (PYR), showed generally similar IC50 values against the monkey transporters (within sixfold). Consistent with the in vitro inhibition of metformin (MFM) transport by PYR (IC50 for cynomolgus OCT2, MATE1, and MATE2K; 1.2 ± 0.38, 0.17 ± 0.04, and 0.25 ± 0.04 µM, respectively), intravenous pretreatment of monkeys with PYR (0.5 mg/kg) decreased the clearance (54 ± 9%) and increased in the area under the plasma concentration-time curve of MFM (AUC ratio versus control = 2.23; 90% confidence interval of 1.57 to 3.17). These findings suggest that the cynomolgus monkey may have some utility in support of in vitro-in vivo extrapolations (IVIVEs) involving the inhibition of renal OCT2 and MATEs. In turn, cynomolgus monkey-enabled IVIVEs may inform human DDI risk assessment.


Subject(s)
Cations/metabolism , Kidney/metabolism , Organic Cation Transport Proteins/metabolism , Animals , Cell Line , Drug Interactions/physiology , HEK293 Cells , Humans , Kinetics , Macaca fascicularis , Metformin/metabolism , Pyrimethamine/metabolism
2.
J Pharmacol Exp Ther ; 344(3): 673-85, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23297161

ABSTRACT

Organic anion-transporting polypeptides (OATP) 1B1, 1B3, and 2B1 can serve as the loci of drug-drug interactions (DDIs). In the present work, the cynomolgus monkey was evaluated as a potential model for studying OATP-mediated DDIs. Three cynomolgus monkey OATPs (cOATPs), with a high degree of amino acid sequence identity (91.9, 93.5, and 96.6% for OATP1B1, 1B3, and 2B1, respectively) to their human counterparts, were cloned, expressed, and characterized. The cOATPs were stably transfected in human embryonic kidney cells and were functionally similar to the corresponding human OATPs (hOATPs), as evident from the similar uptake rate of typical substrates (estradiol-17ß-d-glucuronide, cholecystokinin octapeptide, and estrone-3-sulfate). Moreover, six known hOATP inhibitors exhibited similar IC(50) values against cOATPs. To further evaluate the appropriateness of the cynomolgus monkey as a model, a known hOATP substrate [rosuvastatin (RSV)]-inhibitor [rifampicin (RIF)] pair was examined in vitro; the monkey-derived parameters (RSV K(m) and RIF IC(50)) were similar (within 3.5-fold) to those obtained with hOATPs and human primary hepatocytes. In vivo, the area under the plasma concentration-time curve of RSV (3 mg/kg, oral) given 1 hour after a single RIF dose (15 mg/kg, oral) was increased 2.9-fold in cynomolgus monkeys, consistent with the value (3.0-fold) reported in humans. A number of in vitro-in vivo extrapolation approaches, considering the fraction of the pathways affected and free versus total inhibitor concentrations, were also explored. It is concluded that the cynomolgus monkey has the potential to serve as a useful model for the assessment of OATP-mediated DDIs in a nonclinical setting.


Subject(s)
Liver/metabolism , Macaca fascicularis/metabolism , Organic Anion Transporters/metabolism , Animals , Biological Transport , Cell Line , Cloning, Molecular/methods , Drug Interactions , Fluorobenzenes/pharmacology , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Liver/drug effects , Male , Models, Animal , Organic Anion Transporters/genetics , Pyrimidines/pharmacology , Rifampin/pharmacology , Rosuvastatin Calcium , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...