Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Metabolites ; 13(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37755285

ABSTRACT

The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.

3.
J Dev Biol ; 11(1)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36976101

ABSTRACT

The epidermal barrier of mammals is initially formed during embryonic development and continuously regenerated by the differentiation and cornification of keratinocytes in postnatal life. Cornification is associated with the breakdown of organelles and other cell components by mechanisms which are only incompletely understood. Here, we investigated whether heme oxygenase 1 (HO-1), which converts heme into biliverdin, ferrous iron and carbon monoxide, is required for normal cornification of epidermal keratinocytes. We show that HO-1 is transcriptionally upregulated during the terminal differentiation of human keratinocytes in vitro and in vivo. Immunohistochemistry demonstrated expression of HO-1 in the granular layer of the epidermis where keratinocytes undergo cornification. Next, we deleted the Hmox1 gene, which encodes HO-1, by crossing Hmox1-floxed and K14-Cre mice. The epidermis and isolated keratinocytes of the resulting Hmox1f/f K14-Cre mice lacked HO-1 expression. The genetic inactivation of HO-1 did not impair the expression of keratinocyte differentiation markers, loricrin and filaggrin. Likewise, the transglutaminase activity and formation of the stratum corneum were not altered in Hmox1f/f K14-Cre mice, suggesting that HO-1 is dispensable for epidermal cornification. The genetically modified mice generated in this study may be useful for future investigations of the potential roles of epidermal HO-1 in iron metabolism and responses to oxidative stress.

4.
Cells ; 11(22)2022 11 21.
Article in English | MEDLINE | ID: mdl-36429119

ABSTRACT

Autophagy is a ubiquitous degradation mechanism, which plays a critical role in cellular homeostasis. To test whether autophagy suppresses or supports the growth of tumors in the epidermis of the skin, we inactivated the essential autophagy gene Atg7 specifically in the epidermal keratinocytes of mice (Atg7∆ep) and subjected such mutant mice and fully autophagy-competent mice to tumorigenesis. The lack of epithelial Atg7 did not prevent tumor formation in response to 7, 12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O tetradecanoylphorbol-13-acetate (TPA) as the promoter of tumor growth. However, the number of tumors per mouse was reduced in mice with epithelial Atg7 deficiency. In the K5-SOS EGFRwa2/wa2 mouse model, epithelial tumors were initiated by Son of sevenless (SOS) in response to wounding. Within 12 weeks after tumor initiation, 60% of the autophagy-competent K5-SOS EGFRwa2/wa2 mice had tumors of 1 cm diameter and had to be sacrificed, whereas none of the Atg7∆ep K5-SOS EGFRwa2/wa2 mice formed tumors of this size. In summary, the deletion of Atg7 reduced the growth of epithelial tumors in these two mouse models of skin cancer. Thus, our data show that the inhibition of autophagy limits the growth of epithelial skin tumors.


Subject(s)
Neoplasms, Glandular and Epithelial , Skin Neoplasms , Animals , Mice , Autophagy , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , ErbB Receptors/metabolism , Keratinocytes/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Skin Neoplasms/pathology
5.
Autophagy ; 18(5): 1005-1019, 2022 05.
Article in English | MEDLINE | ID: mdl-34491140

ABSTRACT

ABBREVIATIONS: ATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.


Subject(s)
Aging, Premature , Sebum , Animals , Autophagy/genetics , Mice , Perilipin-2 , Pheromones , Phosphatidylserines , Phospholipids
6.
J Allergy Clin Immunol ; 147(6): 2386-2393.e4, 2021 06.
Article in English | MEDLINE | ID: mdl-33675820

ABSTRACT

BACKGROUND: The molecular control of inflammation and epidermal thickening in skin lesions of patients with atopic dermatitis (AD) is not known. Sequestosome 1/p62 is a multifunctional adapter protein implicated in the control of key regulators of cellular homeostasis, such as proinflammatory and mechanistic target of rapamycin signaling. OBJECTIVE: We sought to determine whether p62 plays a role in the cutaneous and systemic manifestations of an AD-like mouse model. METHODS: AD-like skin lesions were induced by deletion of JunB/AP-1, specifically in epidermal keratinocytes (JunBΔep). The contribution of p62 to pathological changes was determined by inactivation of p62 in JunBΔepp62-/- double knockout mice. RESULTS: Expression of p62 was elevated in skin lesions of JunBΔep mice, resembling upregulation of p62 in AD and psoriasis. When p62 was inactivated, JunBΔep-associated defects in the differentiation of keratinocytes, epidermal thickening, skin infiltration by mast cells and neutrophils, and the development of macroscopic skin lesions were significantly reduced. p62 inactivation had little effect on circulating cytokines, but decreased serum IgE. Signaling through mechanistic target of rapamycin and natural factor kappa B was increased in JunBΔep but not in JunBΔepp62-/- double knockout skin, indicating an important role of p62 in enhancing these signaling pathways in the skin during AD-like inflammation. CONCLUSIONS: Our results provide the first in vivo evidence for a proinflammatory role of p62 in skin and suggest that p62-dependent signaling pathways may be promising therapeutic targets to ameliorate the skin manifestations of AD and possibly psoriasis.


Subject(s)
Dermatitis, Atopic/etiology , Dermatitis, Atopic/metabolism , Disease Susceptibility , Sequestosome-1 Protein/metabolism , Animals , Biomarkers , Chronic Disease , Dermatitis, Atopic/pathology , Disease Models, Animal , Mice , Mice, Knockout , Phenotype , Sequestosome-1 Protein/genetics , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
7.
Autophagy ; 16(10): 1851-1857, 2020 10.
Article in English | MEDLINE | ID: mdl-31880208

ABSTRACT

The incisors of rodents comprise an iron-rich enamel and grow throughout adult life, making them unique models of iron metabolism and tissue homeostasis during aging. Here, we deleted Atg7 (autophagy related 7) in murine ameloblasts, i.e. the epithelial cells that produce enamel. The absence of ATG7 blocked the transport of iron from ameloblasts into the maturing enamel, leading to a white instead of yellow surface of maxillary incisors. In aging mice, lack of ATG7 was associated with the growth of ectopic incisors inside severely deformed primordial incisors. These results suggest that 2 characteristic features of rodent incisors, i.e. deposition of iron on the enamel surface and stable growth during aging, depend on autophagic activity in ameloblasts. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; CMV: cytomegalovirus; Cre: Cre recombinase; CT: computed tomography; FTH1: ferritin heavy polypeptide 1; GFP: green fluorescent protein; KRT5: keratin 5; KRT14: keratin 14; LGALS3: lectin, galactose binding, soluble 3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCOA4: nuclear receptor coactivator 4; NRF2: nuclear factor, erythroid 2 like 2; SQSTM1: sequestosome 1.


Subject(s)
Aging , Ameloblasts/metabolism , Autophagy-Related Protein 7/physiology , Incisor/metabolism , Iron/metabolism , Animals , Autophagy , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Female , Ferritins/metabolism , Gene Deletion , Green Fluorescent Proteins/metabolism , Homeostasis , Male , Mice , Mice, Transgenic , Sequestosome-1 Protein/metabolism , X-Ray Microtomography
8.
Apoptosis ; 24(1-2): 62-73, 2019 02.
Article in English | MEDLINE | ID: mdl-30552537

ABSTRACT

Epidermal keratinocytes undergo cornification to form the cellular building blocks of hard skin appendages such as nails and the protective layer on the surface of the skin. Cornification requires the cross-linking of structural proteins and the removal of other cellular components to form mechanically rigid and inert corneocytes. Autophagy has been proposed to contribute to this intracellular remodelling process, but its molecular targets in keratinocytes, if any, have remained elusive. Here, we deleted the essential autophagy factor Atg7 in K14-positive epithelia of mice and determined by proteomics the impact of this deletion on the abundance of individual proteins in cornified nails. The genetic suppression of autophagy in keratinocytes resulted in a significant increase in the number of proteins that survived cornification and in alterations of their abundance in the nail proteome. A broad range of enzymes and other non-structural proteins were elevated whereas the amounts of cytoskeletal proteins of the keratin and keratin-associated protein families, cytolinker proteins and desmosomal proteins were either unaltered or decreased in nails of mice lacking epithelial autophagy. Among the various types of non-cytoskeletal proteins, the subunits of the proteasome and of the TRiC/CCT chaperonin were most strongly elevated in mutant nails, indicating a particularly important role of autophagy in removing these large protein complexes during normal cornification. Taken together, the results of this study suggest that autophagy is active during nail keratinocyte cornification and its substrate specificity depends on the accessibility of proteins outside of the cytoskeleton and their presence in large complexes.


Subject(s)
Autophagy/physiology , Cytoplasm/metabolism , Cytoskeleton/metabolism , Hoof and Claw/physiology , Keratinocytes/physiology , Organogenesis/physiology , Proteolysis , Animals , Cell Differentiation/genetics , Epidermis/physiology , Intracellular Space/metabolism , Keratins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Skin/metabolism
9.
Exp Dermatol ; 27(10): 1142-1151, 2018 10.
Article in English | MEDLINE | ID: mdl-30033522

ABSTRACT

We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.


Subject(s)
Autophagy-Related Protein 7/genetics , Autophagy/genetics , Sebaceous Glands/pathology , Sebaceous Glands/physiopathology , Sebum/chemistry , Animals , Autophagosomes , Cell Proliferation/genetics , Cholesterol/analysis , Fatty Acids, Nonesterified/analysis , Hair , Male , Mice , Phenotype , Waxes/analysis
11.
Mol Neurobiol ; 55(11): 8425-8437, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29550918

ABSTRACT

Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/f Tyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/f Tyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/f Tyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/f Tyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/f Tyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.


Subject(s)
Autophagy-Related Protein 7/genetics , Autophagy/genetics , Brain/pathology , Gene Deletion , Neuroepithelial Cells/metabolism , Neurons/metabolism , Protein Aggregates , Sequestosome-1 Protein/metabolism , Animals , Ciliary Body/metabolism , Ependyma/metabolism , Ependyma/pathology , Female , Integrases/metabolism , Mice , Neuroepithelial Cells/ultrastructure , Neurons/pathology , Neurons/ultrastructure , Phospholipids/metabolism , Ubiquitin/metabolism
12.
Genome Biol Evol ; 10(2): 694-704, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29447391

ABSTRACT

The epidermis of amniotes forms a protective barrier against the environment and the differentiation program of keratinocytes, the main cell type in the epidermis, has undergone specific alterations in the course of adaptation of amniotes to a broad variety of environments and lifestyles. The epidermal differentiation complex (EDC) is a cluster of genes expressed at late stages of keratinocyte differentiation in both sauropsids and mammals. In the present study, we identified and analyzed the crocodilian equivalent of the EDC. The gene complement of the EDC of both the American alligator and the saltwater crocodile were determined by comparative genomics, de novo gene prediction and identification of EDC transcripts in published transcriptome data. We found that crocodilians have an organization of the EDC similar to that of their closest living relatives, the birds, with which they form the clade Archosauria. Notable differences include the specific expansion of a subfamily of EDC genes in crocodilians and the loss of distinct ancestral EDC genes in birds. Identification and comparative analysis of crocodilian orthologs of avian feather proteins suggest that the latter evolved by cooption and sequence modification of ancestral EDC genes, and that the amplification of an internal highly cysteine-enriched amino acid sequence motif gave rise to the feather component epidermal differentiation cysteine-rich protein in the avian lineage. Thus, sequence diversification of EDC genes contributed to the evolutionary divergence of the crocodilian and avian integuments.


Subject(s)
Alligators and Crocodiles/genetics , Biological Evolution , Birds/genetics , Epidermis , Feathers , Amino Acid Sequence , Animals , Base Sequence , Cell Differentiation , Female , Synteny , Turtles/genetics
14.
Sci Rep ; 7(1): 11902, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928425

ABSTRACT

The cornification of keratinocytes on the surface of skin and oral epithelia is associated with the degradation of nuclear DNA. The endonuclease DNase1L2 and the exonuclease Trex2 are expressed specifically in cornifying keratinocytes. Deletion of DNase1L2 causes retention of nuclear DNA in the tongue epithelium but not in the skin. Here we report that lack of Trex2 results in the accumulation of DNA fragments in the cytoplasm of cornifying lingual keratinocytes and co-deletion of DNase1L2 and Trex2 causes massive accumulation of DNA fragments throughout the cornified layers of the tongue epithelium. By contrast, cornification-associated DNA breakdown was not compromised in the epidermis. Aberrant retention of DNA in the tongue epithelium was associated neither with enhanced expression of DNA-driven response genes, such as Ifnb, Irf7 and Cxcl10, nor with inflammation. Of note, the expression of Tlr9, Aim2 and Tmem173, key DNA sensor genes, was markedly lower in keratinocytes and keratinocyte-built tissues than in macrophages and immune tissues, and DNA-driven response genes were not induced by introduction of DNA in keratinocytes. Altogether, our results indicate that DNase1L2 and Trex2 cooperate in the breakdown and degradation of DNA during cornification of lingual keratinocytes and aberrant DNA retention is tolerated in the oral epithelium.


Subject(s)
DNA Fragmentation , DNA/genetics , Deoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Gene Deletion , Keratinocytes/metabolism , Animals , Cell Line , Cells, Cultured , Humans , Mice, Inbred C57BL
15.
PLoS One ; 11(12): e0167789, 2016.
Article in English | MEDLINE | ID: mdl-27936131

ABSTRACT

The morphogenesis of feathers is a complex process that depends on a tight spatiotemporal regulation of gene expression and assembly of the protein components of mature feathers. Recent comparative genomics and gene transcription studies have indicated that genes within the epidermal differentiation complex (EDC) encode numerous structural proteins of cornifying skin cells in amniotes including birds. Here, we determined the localization of one of these proteins, termed EDMTFH (Epidermal Differentiation Protein starting with a MTF motif and rich in Histidine), which belongs to a group of EDC-encoded proteins rich in aromatic amino acid residues. We raised an antibody against an EDMTFH-specific epitope and performed immunohistochemical investigations by light microscopy and immunogold labeling by electron microscopy of chicken embryos at days 14-18 of development. EDMTFH was specifically present in the subperiderm, a transient layer of the embryonic epidermis, and in barbs and barbules of feathers. In the latter, it partially localized to bundles of so-called feather beta-keratins (corneous beta-proteins, CBPs). Cells of the embryonic periderm, the epidermis proper, and the feather sheath were immunonegative for EDMTFH. The results of this study indicate that EDMTFH may contribute to the unique mechanical properties of feathers and define EDMTFH as a common marker of the subperiderm and the feather barbules. This expression pattern of EDMTFH resembles that of epidermal differentiation cysteine-rich protein (EDCRP) and feather CBPs and is in accordance with the hypothesis that a major part of the cyclically regenerating feather follicle is topologically, developmentally and evolutionarily related to the embryonic subperiderm.


Subject(s)
Avian Proteins/analysis , Epidermis/embryology , Feathers/embryology , Proteins/analysis , Amino Acid Sequence , Animals , Chick Embryo , Chickens , Epidermis/chemistry , Feathers/chemistry , Female , Sequence Alignment
16.
PLoS One ; 11(8): e0161640, 2016.
Article in English | MEDLINE | ID: mdl-27537685

ABSTRACT

Targeted gene knockout mouse models have helped to identify roles of autophagy in many tissues. Here, we investigated the retinal pigment epithelium (RPE) of Atg7f/f Tyr-Cre mice (on a C57BL/6 background), in which Cre recombinase is expressed under the control of the tyrosinase promoter to delete the autophagy gene Atg7. In line with pigment cell-directed blockade of autophagy, the RPE and the melanocytes of the choroid showed strong accumulation of the autophagy adaptor and substrate, sequestosome 1 (Sqstm1)/p62, relative to the levels in control mice. Immunofluorescence and Western blot analysis demonstrated that the RPE, but not the choroid melanocytes, of Atg7f/f Tyr-Cre mice also had strongly increased levels of retinoid isomerohydrolase RPE65, a pivotal enzyme for the maintenance of visual perception. In contrast to Sqstm1, genes involved in retinal regeneration, i.e. Lrat, Rdh5, Rgr, and Rpe65, were expressed at higher mRNA levels. Sequencing of the Rpe65 gene showed that Atg7f/f and Atg7f/f Tyr-Cre mice carry a point mutation (L450M) that is characteristic for the C57BL/6 mouse strain and reportedly causes enhanced degradation of the RPE65 protein by an as-yet unknown mechanism. These results suggest that the increased abundance of RPE65 M450 in the RPE of Atg7f/f Tyr-Cre mice is, at least partly, mediated by upregulation of Rpe65 transcription; however, our data are also compatible with the hypothesis that the RPE65 M450 protein is degraded by Atg7-dependent autophagy in Atg7f/f mice. Further studies in mice of different genetic backgrounds are necessary to determine the relative contributions of these mechanisms.


Subject(s)
Autophagy-Related Protein 7/physiology , Retinal Pigment Epithelium/metabolism , cis-trans-Isomerases/metabolism , Animals , Autophagy/genetics , Autophagy/physiology , Autophagy-Related Protein 7/genetics , Blotting, Western , Female , Fluorescent Antibody Technique , Gene Deletion , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monophenol Monooxygenase/metabolism
17.
Mol Biol Evol ; 33(3): 726-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26601937

ABSTRACT

The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation.


Subject(s)
Animal Shells , Biological Evolution , Epidermis , Genome , Genomics , Proteins/genetics , Turtles/genetics , Amino Acid Sequence , Animals , Conserved Sequence , Epidermis/metabolism , Evolution, Molecular , Gene Duplication , Gene Expression Regulation , Genomics/methods , Multigene Family , Phylogeny , Repetitive Sequences, Nucleic Acid , Translocation, Genetic , Turtles/classification
18.
Front Biosci (Elite Ed) ; 5(3): 1000-10, 2013 06 01.
Article in English | MEDLINE | ID: mdl-23747915

ABSTRACT

Autophagy delivers protein aggregates, damaged organelles and intracellular microorganisms to the lysosome for degradation. The epidermis and other epithelia show significant levels of autophagy, however, the functions of autophagy in these tissues have remained elusive until recently. Here we review the experimental approaches for the investigation of autophagy in epithelia and discuss the roles of autophagy in epithelial cells with a focus on epidermal keratinocytes and thymic epithelial cells.


Subject(s)
Autophagy , Homeostasis , Animals , Epithelial Cells/immunology , Humans
19.
J Dermatol Sci ; 71(1): 67-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23669018

ABSTRACT

BACKGROUND: Cornification of keratinocytes involves the degradation of intracellular constituents which has led to the hypothesis that autophagy plays a role in this process. Mice, in which essential autophagy-related genes such as Atg7 are deleted systemically, die after birth and have not been characterized for potential epidermal defects. OBJECTIVE: This study tested whether autophagy is essential for epidermal barrier formation and function. METHODS: Atg7 was inactivated in epidermal keratinocytes by the Cre-loxP system under the control of the keratin K14 promoter (Atg7Δepi mice). Autophagic activity was detected using the GFP-microtubule-associated protein light chain 3 (GFP-LC3) reporter construct and Western blot analysis of LC3. Epidermal morphology was examined by histological and ultrastructural analyses, and barrier functions were assessed by dye diffusion and water loss assays. RESULTS: Suprabasal epidermal cells of normal mice contained GFP-LC3-labeled autophagosomes and epidermal lysates of these mice showed an excess of lipidated over non-lipidated LC3. These features of active autophagy were efficiently suppressed in Atg7Δepi epidermis. Atg7Δepi mice survived the perinatal period and were apparently healthy. Histologically, their epidermis was inconspicuous and ultrastructural analysis revealed no significant defect in cornification. There was however, an increase in the thickness of corneocytes in the back skin of mutant mice. Nevertheless, resistance to dye penetration into the skin and transepidermal water loss were normal in Atg7Δepi mice. CONCLUSION: This study demonstrates that autophagy is constitutively active in the epidermis but not essential for the barrier function of the skin.


Subject(s)
Autophagy , Epidermis/metabolism , Keratinocytes/metabolism , Microtubule-Associated Proteins/deficiency , Skin Absorption , Animals , Autophagy-Related Protein 7 , Cell Differentiation , Cells, Cultured , Diffusion , Epidermis/ultrastructure , Green Fluorescent Proteins , Keratin-14/genetics , Keratinocytes/ultrastructure , Mice , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Permeability , Promoter Regions, Genetic , Water Loss, Insensible
20.
Biochem Biophys Res Commun ; 430(2): 689-94, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23211599

ABSTRACT

Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.


Subject(s)
Autophagy/immunology , Keratin-5/biosynthesis , Microtubule-Associated Proteins/genetics , Thymus Gland/immunology , Animals , Autoimmunity , Autophagy/genetics , Autophagy-Related Protein 5 , Body Weight/genetics , Cell Differentiation/genetics , Cell Differentiation/immunology , Epithelial Cells/cytology , Epithelial Cells/immunology , Gene Deletion , Gene Targeting , Keratin-15 , Keratin-5/genetics , Mice , Mice, Transgenic , Thymus Gland/cytology , Weight Gain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...