Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(27): 30155-30169, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32530601

ABSTRACT

The success of an orthopedic implant therapy depends on successful bone integration and the prevention of microbial infections. In this work, plasma electrolytic oxidation (PEO) was performed to deposit TiO2 coatings enriched with Ca, P, and Ag on titanium to improve its surface properties and antibacterial efficacy while maintaining normal biological functions and thus to enhance the performance of orthopedic implants. After PEO treatment, the surface of Ti was converted to anatase and rutile TiO2, hydroxyapatite, and calcium titanate phases. The presence of these crystalline phases was further increased with an increased Ag content in the coatings. The developed coatings also exhibited a more porous morphology with an improved surface wettability, roughness, microhardness, and frictional coefficient. In vitro antibacterial assays indicated that the Ag-doped coatings can significantly prevent the growth of both Staphylococcus aureus and Escherichia coli by releasing Ag+ ions, and the ability to prevent these bacteria was enhanced by increasing the Ag content in the coatings, resulting in a maximal 6-log reduction of E. coli and a maximal 5-log reduction of S. aureus after 24 h of incubation. Moreover, the in vitro cytocompatibility evaluation of the coatings showed that the osteoblast (MC3T3) cell integration on the PEO-based coatings was greatly improved compared to untreated Ti and no notable impact on their cytocompatibility was observed on increasing the amount of Ag in the coating. In conclusion, the coating with favorable physicochemical and mechanical properties along with controlled silver ion release can offer an excellent antibacterial performance and osteocompatibility and can thus become a prospective coating strategy to face current challenges in orthopedics.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Durapatite/chemistry , Titanium/chemistry , Animals , Escherichia coli/drug effects , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Staphylococcus aureus/drug effects
2.
Materials (Basel) ; 12(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813237

ABSTRACT

The surfaces of two engineering polymers including polyamide 66 (PA66) and polytetrafluoroethylene (PTFE) were treated by diffuse coplanar surface barrier discharges in atmospheric air. We found that plasma treatment improved the adhesion of PA66 for either polymer/polymer or polymer/steel joints, however, it was selective for the investigated adhesive agents. For PTFE the adhesion was unaltered for plasma treatment regardless the type of used adhesive. Tribological properties were slightly improved for PA66, too. Both the friction coefficient and wear decreased. Significant changes, again, could not be detected for PTFE. The occurred variation in the adhesion and tribology was discussed on the basis of the occurred changes in surface chemistry, wettability and topography of the polymer surface.

3.
Microsc Microanal ; 22(4): 820-40, 2016 08.
Article in English | MEDLINE | ID: mdl-27518066

ABSTRACT

In this paper, the change detection of a fast turning specimen is studied at micro-level, whereas the images are acquired without stopping the rotation. In the beginning of the experiment, the imaging system is focused on the surface of the specimen. By starting the rotation of the specimen, the diameter of the specimen changes due to wear, which results in de-focusing of the imaging system. So the amount of blur in the images can be used as evidence of the wear phenomenon. Due to the properties of the microscope, the corners of the frames were dark and had to be cropped. So, each micrograph reflects only a small area of the surface. Nevertheless, techniques like stitching of multiple images can provide a significant surface area for micro-level investigation which increases the effectiveness of analyzing the material modification. Based on the results computer vision could detect a change of about 1.2 µm in the diameter of the specimen. More important is that we could follow the same locations of the surface in the microscopic images despite blurring, uneven illumination, change on the surface, and relatively a high-speed rotation.

SELECTION OF CITATIONS
SEARCH DETAIL
...