Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 81(5): 053704, 2010 May.
Article in English | MEDLINE | ID: mdl-20515142

ABSTRACT

We have designed and built a microfluidic liquid cell capable of high-resolution atomic force microscope (AFM) imaging and force spectroscopy. The liquid cell was assembled from three molded poly(dimethylsiloxane) (PDMS) pieces and integrated with commercially purchased probes. The AFM probe was embedded within the assembly such that the cantilever and tip protrude into the microfluidic channel. This channel is defined by the PDMS assembly on the top, a PDMS gasket on all four sides, and the sample substrate on the bottom, forming a liquid-tight seal. Our design features a low volume fluidic channel on the order of 50 nl, which is a reduction of over 3-5 orders of magnitude compared to several commercial liquid cells. This device facilitates testing at high shear rates and laminar flow conditions coupled with full AFM functionality in microfluidic aqueous environments, including execution of both force displacement curves and high resolution imaging.

2.
Ultramicroscopy ; 100(3-4): 267-76, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15231319

ABSTRACT

This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 microm/s-a threefold improvement in bandwidth versus conventional piezotube actuators.

SELECTION OF CITATIONS
SEARCH DETAIL
...