Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
JOP ; 6(4): 303-15, 2005 Jul 08.
Article in English | MEDLINE | ID: mdl-16006680

ABSTRACT

Genetic predisposition and environmental influences insidiously converge to cause glucose intolerance and hyperglycemia. Beta-cell compensates by secreting more insulin and when it fails, overt diabetes mellitus ensues. The need to understand the mechanisms involved in insulin secretion cannot be stressed enough. Phosphorylation of proteins plays an important role in regulating insulin secretion. In order to understand how a particular cellular process is regulated by protein phosphorylation the nature of the protein kinases and protein phosphatases involved and the mechanisms that determine when and where these enzymes are active should be investigated. While the actions of protein kinases have been intensely studied within the beta-cell, less emphasis has been placed on protein phosphatases even though they play an important regulatory role. This review focuses on the importance of protein phosphatase 2A in insulin secretion. Most of the present knowledge on protein phosphatase 2A originates from protein phosphatase inhibitor studies on islets and beta-cell lines. The ability of protein phosphatase 2A to change its activity in the presence of glucose and inhibitors provides clues to its role in regulating insulin secretion. An aggressive approach to elucidate the substrates and mechanisms of action of protein phosphatases is crucial to the understanding of phosphorylation events within the beta-cell. Characterizing protein phosphatase 2A within the beta-cell will certainly help us in understanding the mechanisms involved in insulin secretion and provide valuable information for drug development.


Subject(s)
Diabetes Mellitus, Type 2/enzymology , Insulin/metabolism , Islets of Langerhans/enzymology , Phosphoprotein Phosphatases/physiology , Calcineurin/physiology , Humans , Insulin Secretion , Islets of Langerhans/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Phosphatase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...