Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(23): 9040-9050, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37264600

ABSTRACT

Degradation of starch granules by a psychrophilic α-amylase, AHA, from the Antarctic bacterium Pseudoalteromonas haloplanktis TAB23 was facilitated by C-terminal fusion to a starch-binding domain (SBD) from either Aspergillus niger glucoamylase (SBDGA) or Arabidopsis thaliana glucan, water dikinase 3 (SBDGWD3) via a decapeptide linker. Depending on the waxy, normal or high-amylose starch type and the botanical source, the AHA-SBD fusion enzymes showed up to 3 times higher activity than AHA wild-type. The SBD-fusion thus increased the density of enzyme attack-sites and binding-sites on the starch granules by up to 5- and 7-fold, respectively, as measured using an interfacial catalysis approach that combined conventional Michaelis-Menten kinetics, with the substrate in excess, and inverse kinetics, having enzyme in excess, with enzyme-starch granule adsorption isotherms. Higher substrate affinity of the SBDGA compared to SBDGWD3 was accompanied by the superior activity of AHA-SBDGA in agreement with the Sabatier principle of adsorption limited heterogenous catalysis.


Subject(s)
Starch , alpha-Amylases , alpha-Amylases/chemistry , Hydrolysis , Protein Structure, Tertiary , Starch/chemistry , Amylose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...