Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338302

ABSTRACT

This study examined the sensitivity of single-walled (5,5) aluminium nitride nanotubes ((5,5) AlNNTs) to carbon monoxide (CO) and carbon dioxide (CO2) gas molecules by performing DFT calculations using a hybrid functional, specifically, B3LYP (Becke's three-parameter, Lee-Yang-Parr) exchange-correlation functional at a 6-31G* basis set. This research investigates the adsorption behavior of CO2 and CO molecules on pristine and silicon-doped aluminum nitride nanotubes (AlNNTs) and examines their implications for sensor applications. The study assesses each system's adsorption energy, sensing potential, and recovery time to gain insights into their binding strength and practical viability. For CO2 adsorption on (5,5) AlNNT, significant adsorption energy of -24.36 kcal/mol was observed, indicating a strong binding to the nanotube surface, with a sensing potential of 8.95%. However, the slow recovery time of approximately 4.964 days may limit its real-time application. Si-(5,5) AlNNT exhibited a CO2 adsorption energy of -19.69 kcal/mol, a sensing potential of 5.40%, and a relatively short recovery time of approximately 2.978 min, making it a promising candidate for CO2 sensing. CO adsorption on (5,5) AlNNT showed an adsorption energy of -25.20 kcal/mol, a sensing potential of 9.095%, but a longer recovery time of approximately 20.130 days. Si-(5,5) AlNNT displayed a high CO adsorption energy of -20.78 kcal/mol, a sensing potential of 4.29%, and a recovery time of approximately 18.320 min. These findings provide insights into the adsorption characteristics of carbon molecules on AlNNTs, highlighting their potential for CO2 and CO sensing applications.

2.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889312

ABSTRACT

Fullerenes, boron nitride nanotubes (BNNTs), and carbon nanotubes (CNTs) have all been extensively explored for biomedical purposes. This work describes the use of BNNTs and CNTs as mycolactone inhibitors. Density functional theory (DFT) has been used to investigate the chemical properties and interaction mechanisms of mycolactone with armchair BNNTs (5,5) and armchair CNTs (5,5). By examining the optimized structure and interaction energy, the intermolecular interactions between mycolactone and nanotubes were investigated. The findings indicate that mycolactone can be physically adsorbed on armchair CNTs in a stable condition, implying that armchair CNTs can be potential inhibitors of mycolactone. According to DOS plots and HOMO-LUMO orbital studies, the electronic characteristics of pure CNTs are not modified following mycolactone adsorption on the nanotubes. Because of mycolactone's large π-π interactions with CNTs, the estimated interaction energies indicate that mycolactone adsorption on CNTs is preferable to that on BNNTs. CNTs can be explored as potentially excellent inhibitors of mycolactone toxins in biological systems.


Subject(s)
Nanotubes, Carbon , Nanotubes , Adsorption , Density Functional Theory , Macrolides , Nanotubes/chemistry , Nanotubes, Carbon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...