Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Caspian J Intern Med ; 15(3): 499-508, 2024.
Article in English | MEDLINE | ID: mdl-39011438

ABSTRACT

Background: Allelic variants of genes encoding enzymes of the esterase system (CES1) and P-glycoprotein (ABCB1) can change the metabolism and pharmacokinetics of dabigatran. Therefore, they act as determining factors in the development of side effects, especially bleeding. We analyzed the genotype-phenotype relationship of ABCB1 (rs1045642, rs4148738, rs2032582, and rs1128503) and CES1 (rs8192935, rs71647871, and rs2244613) polymorphisms in patients with atrial fibrillation who had been treated with dabigatran. Methods: A total of 150 patients were recruited for this study. TaqMan technology was used for SNP genotyping. Results: Patients with the rs2244613 GG genotype had a lower concentration (55.27 ± 34.22 ng/ml) compared to those with the TT genotype (63.33 ± 52.25 ng/ml) (additive model, P = 0.000). Individuals with the rs8192935 AA genotype had a lower concentration (52.72 ± 30.45 ng/ml) compared to those with the GG genotype (79.78 ± 57 ng/ml) (additive model, P = 0.001). The APTT values among the different genotypes of the ABCB1 SNPs, rs4148738 and rs1045642, were significantly different (P = 0.035 and P = 0.024, respectively). Conclusion: Our research demonstrates that the CES1 polymorphisms, rs8192935 and rs2244613, are associated with the pharmacodynamics and pharmacokinetics of dabigatran in the Kazakh subpopulation.

2.
Ther Adv Cardiovasc Dis ; 18: 17539447241249886, 2024.
Article in English | MEDLINE | ID: mdl-38801157

ABSTRACT

Atrial fibrillation (AF) accounts for 40% of all cardiac arrhythmias and is associated with a high risk of stroke and systemic thromboembolic complications. Dabigatran, rivaroxaban, apixaban, and edoxaban are direct oral anticoagulants (DOACs) that have been proven to prevent stroke in patients with non-valvular AF. This review summarizes the pharmacokinetics, pharmacodynamics, and drug interactions of DOACs, as well as new data from pharmacogenetic studies of these drugs. This review is aimed at analyzing the scientific literature on the gene polymorphisms involved in the metabolism of DOACs. We searched PubMed, Cochrane, Google Scholar, and CyberLeninka (Russian version) databases with keywords: 'dabigatran', 'apixaban', 'rivaroxaban', 'edoxaban', 'gene polymorphism', 'pharmacogenetics', 'ABCB1', 'CES1', 'SULT1A', 'ABCG2', and 'CYP3A4'. The articles referred for this review include (1) full-text articles; (2) study design with meta-analysis, an observational study in patients taking DOAC; and (3) data on the single-nucleotide polymorphisms and kinetic parameters of DOACs (plasma concentration), or a particular clinical outcome, published in English and Russian languages during the last 10 years. The ages of the patients ranged from 18 to 75 years. Out of 114 reviewed works, 24 were found eligible. As per the available pharmacogenomic data, polymorphisms affecting DOACs are different. This may aid in developing individual approaches to optimize DOAC pharmacotherapy to reduce the risk of hemorrhagic complications. However, large-scale population studies are required to determine the dosage of the new oral anticoagulants based on genotyping. Information on the genetic effects is limited owing to the lack of large-scale studies. Uncovering the mechanisms of the genetic basis of sensitivity to DOACs helps in developing personalized therapy based on patient-specific genetic variants and improves the efficacy and safety of DOACs in the general population.


Gene polymorphism as a cause of hemorrhagic complications in patients with non-valvular atrial fibrillation treated with oral vitamin K-independent anticoagulantsAtrial fibrillation (AF) accounts for 40% of all cardiac arrhythmias and is associated with a high risk of stroke and systemic thromboembolic complications. Dabigatran, rivaroxaban, apixaban, and edoxaban are direct oral anticoagulants (DOACs) that have been proven to prevent stroke in patients with non-valvular AF. This review summarizes the pharmacokinetics, pharmacodynamics, and drug interactions of DOACs, as well as new data from pharmacogenetic studies of these drugs.


Subject(s)
Atrial Fibrillation , Hemorrhage , Pharmacogenomic Variants , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/drug therapy , Atrial Fibrillation/diagnosis , Administration, Oral , Hemorrhage/chemically induced , Hemorrhage/genetics , Risk Factors , Anticoagulants/adverse effects , Anticoagulants/administration & dosage , Anticoagulants/pharmacokinetics , Treatment Outcome , Stroke/prevention & control , Stroke/genetics , Risk Assessment , Phenotype , Polymorphism, Single Nucleotide , Vitamin K/antagonists & inhibitors , Drug Interactions
3.
Genes (Basel) ; 14(6)2023 05 29.
Article in English | MEDLINE | ID: mdl-37372371

ABSTRACT

Nowadays, direct oral anticoagulants (DOACs) are the first-line anticoagulant strategy in patients with non-valvular atrial fibrillation (NVAF). We aimed to identify the influence of polymorphisms of the genes encoding P-glycoprotein (ABCB1) and carboxylesterase 1 (CES1) on the variability of plasma concentrations of DOACs in Kazakhstani patients with NVAF. We analyzed polymorphisms rs4148738, rs1045642, rs2032582 and rs1128503 in ABCB1 and rs8192935, rs2244613 and rs71647871 CES1 genes and measured the plasma concentrations of dabigatran/apixaban and biochemical parameters in 150 Kazakhstani NVAF patients. Polymorphism rs8192935 in the CES1 gene (p = 0.04), BMI (p = 0.01) and APTT level (p = 0.01) were statistically significant independent factors of trough plasma concentration of dabigatran. In contrast, polymorphisms rs4148738, rs1045642, rs2032582 and rs1128503 in ABCB1 and rs8192935, rs2244613 and rs71647871 CES1 genes did not show significant influence on plasma concentrations of dabigatran/apixaban drugs (p > 0.05). Patients with GG genotype (138.8 ± 100.1 ng/mL) had higher peak plasma concentration of dabigatran than with AA genotype (100.9 ± 59.6 ng/mL) and AG genotype (98.7 ± 72.3 ng/mL) (Kruskal-Wallis test, p = 0.25). Thus, CES1 rs8192935 is significantly associated with plasma concentrations of dabigatran in Kazakhstani NVAF patients (p < 0.05). The level of the plasma concentration shows that biotransformation of the dabigatran processed faster in individual carriers of GG genotype rs8192935 in the CES1 gene than with AA genotype.


Subject(s)
Atrial Fibrillation , Dabigatran , Humans , Dabigatran/therapeutic use , Dabigatran/metabolism , Atrial Fibrillation/drug therapy , Atrial Fibrillation/genetics , Anticoagulants/adverse effects , Genotype , ATP Binding Cassette Transporter, Subfamily B/genetics , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...