Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679077

ABSTRACT

Products derived from wheat grains are an important source of protein in the daily diet of people in many parts of the world. The biological value of protein is determined by its amino acid composition and the proportions of the individual amino acids. Synthesis of these compounds in wheat grains is influenced by genetic factors, as well as habitat conditions and the agrotechnology applied in cultivation. The aim of this study was to assess the effect of production technology (integrated, intensive) on the grain yield and the content amino acid profile of protein in common and durum wheat grain. Field research was conducted at the Experimental Station IUNG-PIB in Osiny (Poland) in two growing seasons. It was found that grain yield significantly depended on the weather conditions in the years of harvesting and genotype, but did not depend on the production technology. On the other hand, the protein content and their amino acid composition depended significantly on the production technology and genotype. A significantly higher content of protein substances was found in durum wheat grain. Increasing the intensity of production technology had a positive effect on the total protein content and the content of individual amino acids, both exogenous and endogenous. The amino acid limiting the biological value of protein contained in grains of both wheat species was lysine, and the deficiency of this amino acid was significantly lower in grain protein from intensive than integrated cultivation technology.

2.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807310

ABSTRACT

This work aimed to evaluate the effect of partial replacement of semolina with 0, 1, 5, 10, 15, and 20% of ground buckwheat hull (BH) on the chemical composition, antioxidant properties, color, cooking characteristics, and sensory properties of wheat pasta. Pasta samples were prepared by dough lamination (tagliatelle shape) and dried at 55 °C until the moisture content was 11-12% (wet basis). Analyses of samples showed that the addition of BH caused an increase in fiber content in pasta from 4.31% (control pasta) to 14.15% (pasta with 20% of BH). Moreover, the brightness and yellowness of BH-enriched products were significantly decreased compared to the control sample, and the total color difference ranged from 23.84 (pasta with 1% of BH) to 32.56 (pasta with 15% BH). In addition, a decrease in optimal cooking time, as well as an increased weight index and cooking loss, was observed in BH-enriched pasta samples. Furthermore, BH-enriched cooked pasta had significantly higher total phenolic content and antioxidant activity but an unpleasant smell and taste, especially if the level of BH was higher than 10%.


Subject(s)
Fagopyrum , Triticum , Cooking , Dietary Fiber/analysis , Flour/analysis , Taste , Triticum/chemistry
3.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946646

ABSTRACT

Dried and crushed dandelion roots (Taraxacum officinale F. H. Wigg.) (TO) were used as a formulation additive (at the amount of 0, 1, 3, 4, 5, and 6 g 100 g-1 flour) to wheat bread. The farinographic properties of the dough and the physical and chemical properties of the bread were evaluated. It was found that the addition of dried flour caused a significant decrease in water absorption by the flour (1% and higher TO level), an increase in the development time (from 2% to 5% TO addition) and dough stability (3% and 4% TO level), and an increase in dough softening (4% and higher TO level). As the substitution of TO for wheat flour increased, there was a gradual decrease in loaf volume, an increase in specific weight and crumb hardness, and a darkening of the crumb color. The total polyphenol content increased linearly with the percentage increase of dried root additions TO from 0.290 to 0.394 mg GAE g-1 d.m., which translated into an increase in the antioxidant activity of the bread. It was found that dried crushed roots of Taraxacum officinale can be a recipe additive for wheat bread; however, due to their specific smell and bitter aftertaste, the level of this additive should not exceed 3 g 100 g-1 flour.


Subject(s)
Bread/analysis , Flour/analysis , Food Quality , Plant Roots/chemistry , Taraxacum/chemistry , Triticum
4.
Foods ; 8(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426333

ABSTRACT

Cistus incanus L. (CI) has been proposed as an innovative functional supplement of food products, and hence the present study aimed to evaluate the effect of the addition of dried CI on the properties of bread. Bread was prepared from white wheat flour supplemented with the addition of 1%, 2%, 3%, 4%, and 5% of ground CI. After the completion of baking process, various characteristics of the obtained bread product, such as yield, volume, porosity, acidity, color, and texture, were evaluated. In addition, total phenolic content (TPC), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, chelating power (CHEL), and ability to quench OH∙ radicals were measured. The results showed that the addition of CI to bread caused a reduction in the volume of bread, but texture of the crumbs was acceptable. Acidity and moisture content of bread were found to be increased following CI enrichment. Significant changes in the ash content and the color of bread crumbs were also observed. Bread incorporated with CI was characterized by significantly higher TPC and much higher antioxidant activity, as measured by ABTS, CHEL, and OH∙ radicals, compared to control bread. Supplementation of bread with 3% CI produced a product with desirable characteristics which was also favored by consumers.

5.
Toxins (Basel) ; 8(6)2016 05 25.
Article in English | MEDLINE | ID: mdl-27231939

ABSTRACT

The levels of 26 mycotoxins were determined in 147 samples of the grain of cereals cultivated in five regions of Poland during the 2014 growing season. The HPLC-HRMS (time-of-flight) analytical technique was used. An analytical procedure to simultaneously determine 26 mycotoxins in grain was developed, tested and verified. Samples from eastern and southern Poland were more contaminated with mycotoxins than the samples from northern and western Poland. Toxins produced by Fusarium fungi were the main contaminants found. Some deoxynivalenol (DON) was found in 100% of the tested samples of wheat (Osiny, Borusowa, Werbkowice), triticale, winter barley and oats, while the maximum permissible DON level (as defined in the EU Commission Regulation No. 1881/2006) was exceeded in 10 samples. Zearalenone (ZEN), DON metabolites and enniatins were also commonly found. The presence of mycotoxins in grain reflected the prevailing weather conditions during the plant flowering/earing stages, which were favorable for the development of blight. Among all investigated wheat genotypes, cv. Fidelius was the least contaminated, while Bamberka, Forkida and Kampana were the most contaminated. However, the single-factor ANOVA analysis of variance did not reveal (at a statistical significance level α = 0.05) any differences between levels of mycotoxins in individual genotypes. Triticale was the most contaminated grain among all of the tested varieties. ZEN, DON and the sum of 3-acetyldexynivalenol and 15-acetyldeoxynivalenol (3- and 15-ADON) were found in 100% of the tested triticale samples at concentrations within the 4-86, 196-1326 and 36-374 µg·kg(-1) range, respectively. Of particular concern was the fact that some "emerging mycotoxins" (enniatins) (in addition to commonly-known and legally-regulated mycotoxins) were also found in the tested triticale samples (enniatin B (Enn-B), enniatin B1 (Enn-B1), enniatin A-1 (Enn-A1), 100% of samples, and enniatin A (Enn-A), 70% of samples). Depending on the toxin, they were found at levels between 8 and 3328 µg·kg(-1).


Subject(s)
Edible Grain/microbiology , Food Contamination/analysis , Fusarium/metabolism , Mycotoxins/isolation & purification , Avena/microbiology , Genotype , Hordeum/microbiology , Poland , Trichothecenes/isolation & purification , Triticale/microbiology , Triticum/microbiology , Weather , Zearalenone/isolation & purification
6.
Article in English | MEDLINE | ID: mdl-25705931

ABSTRACT

Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.


Subject(s)
Agriculture/methods , Edible Grain/microbiology , Food Contamination/analysis , Fusarium/isolation & purification , Mycotoxins/analysis , Triticum/microbiology , Seasons , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...