Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 337: 117724, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36966635

ABSTRACT

Soils in semiarid riparian ecosystems have large carbon (C) stocks that promote water and nutrient availability for productive plant communities consumed by grazing animals. Changes to riparian hydrologic conditions caused by channel incision result in different edaphic conditions and a greater abundance of upland plant species that may be associated with lower soil C stocks. Using riparian meadows alongside Maggie Creek in central Nevada, we show that 27 years of modified grazing practices can repair ecosystem processes and increase the C stocks. We compared C and nitrogen (N) stocks (of soils and plant biomass) on floodplains, terraces, and uplands of reaches where grazing was either modified or excluded to reaches where no changes to grazing practices were made. Grazing management allowed beaver to establish, improving hydrology and lengthening the growing season. These changes allowed C and N to accumulate on geomorphic surfaces that extended from the stream channel to the surrounding hillslopes. A stoichiometric relationship between C and N shows carbon sequestration can reduce nutrient runoff to nearby waterways and may depend on nitrogen availability. Gains in ecosystem carbon ranged from 93 to 452 g C m-2 y-1 and were dominated by increases in soil C. Gains in soil C occurred across the full depth range measured (0-45 cm) and were comparable to those found in restored wetlands and meadows located in more humid ecosystems. Carbon gains exhibited substantial variability caused by microtopography and plant community composition. While grazing exclusion resulted in the largest gains in ecosystem C, managed grazing that limited consumption of riparian plants increased ecosystem C relative to reaches where management wasn't changed. We demonstrate that managed grazing that maintains ecosystem process is compatible with projects aimed at increasing soil carbon in semiarid riparian rangelands.


Subject(s)
Ecosystem , Nitrogen , Animals , Nitrogen/analysis , Carbon , Biomass , Soil , Plants
2.
Ecol Appl ; 32(7): e2677, 2022 10.
Article in English | MEDLINE | ID: mdl-35587656

ABSTRACT

Montane meadows are highly productive ecosystems that contain high densities of soil carbon (C) and nitrogen (N). However, anthropogenic disturbances that have led to channel incision and disconnected floodplain hydrology have altered the C balance of many meadows, converting them from net C sinks to net sources of C to the atmosphere. Restoration efforts designed to reconnect floodplain hydrology may slow rates of soil C loss from degraded meadows and restore the conditions for C sequestration and N immobilization, yet questions remain about the long-term impact of such efforts. Here, we used a 22-year meadow restoration chronosequence to measure the decadal impact of hydrologic restoration on aboveground and belowground C and N stocks and concentrations. Increases in herbaceous vegetation biomass preceded changes in soil C stocks, with the largest gains occurring belowground. Root biomass (0-15 cm) increased at a rate of 270.3 g m-2 year-1 and soil C stocks (0-15 cm) increased by 232.9 g C m-2 year-1 across the chronosequence. Increases in soil C concentration (2.99 g C kg-1 year-1 ) were tightly coupled with increases in soil N concentration (0.21 g N kg-1 year-1 ) and soil C:N did not vary with time since restoration. Fourier transform infrared spectroscopy results showed that the fraction of labile aliphatic C-H and carboxylate C-O (COO) compounds in the soil increased with the age of restoration and were positively correlated with soil C and N concentrations. Our results demonstrate that restoration of floodplain hydrology in montane meadows has significant impacts on belowground C and N stocks, soil C and N concentration, and soil C chemistry within the first two decades following restoration.


Subject(s)
Carbon , Nitrogen , Carbon/analysis , Ecosystem , Grassland , Hydrology , Nitrogen/metabolism , Soil/chemistry
3.
Nat Commun ; 11(1): 4721, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948775

ABSTRACT

The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rates and trajectories of ecosystem development in structure and function across biomes. Our work provides insights into the natural history of terrestrial ecosystems. We propose that, regardless of soil age, changes in the environmental context, such as those associated with global climatic and land-use changes, will have important long-term impacts on the structure and function of terrestrial ecosystems across biomes.


Subject(s)
Biota , Ecosystem , Soil/chemistry , Bacteria/classification , Biodiversity , Biomass , Climate , Fungi/classification , Microbiota , Plants/classification , Time Factors
4.
Nat Ecol Evol ; 4(2): 210-220, 2020 02.
Article in English | MEDLINE | ID: mdl-32015427

ABSTRACT

The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes.


Subject(s)
Ecosystem , Soil , Biodiversity , Fungi , Humans , Soil Microbiology
5.
Nat Commun ; 10(1): 3481, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375717

ABSTRACT

Identifying the global drivers of soil priming is essential to understanding C cycling in terrestrial ecosystems. We conducted a survey of soils across 86 globally-distributed locations, spanning a wide range of climates, biotic communities, and soil conditions, and evaluated the apparent soil priming effect using 13C-glucose labeling. Here we show that the magnitude of the positive apparent priming effect (increase in CO2 release through accelerated microbial biomass turnover) was negatively associated with SOC content and microbial respiration rates. Our statistical modeling suggests that apparent priming effects tend to be negative in more mesic sites associated with higher SOC contents. In contrast, a single-input of labile C causes positive apparent priming effects in more arid locations with low SOC contents. Our results provide solid evidence that SOC content plays a critical role in regulating apparent priming effects, with important implications for the improvement of C cycling models under global change scenarios.

6.
New Phytol ; 223(4): 1795-1808, 2019 09.
Article in English | MEDLINE | ID: mdl-31125432

ABSTRACT

Plant-plant interactions are important drivers of ecosystem structure and function, yet predicting interaction outcomes across environmental gradients remains challenging. Understanding how interactions are affected by ontogenetic shifts in plant characteristics can provide insight into the drivers of interactions and improve our ability to anticipate ecosystem responses to environmental change. We developed a conceptual framework of nurse shrub facilitation of tree establishment. We used a combination of field experiments and environmental measurements to test the framework with a shrub (Artemisia tridentata) and a tree (Pinus monophylla), two foundation species in a semiarid environment. Shrub microsites allowed trees to overcome an early population bottleneck and successfully establish in areas without tree cover. Shrubs facilitated trees at multiple ontogenetic stages, but the net outcome of the interaction shifted from strongly positive to neutral after the transition of P. monophylla from juvenile to adult foliage. Microhabitat conditions varied across a broad elevational gradient, but interaction outcomes were not strongly related to elevation. Favorable microsites provided by A. tridentata cover are crucial for P. monophylla recovery after stand-replacing disturbance. Models of vegetation response to rapid global environmental change should incorporate the critically important role of nurse shrub interactions for ameliorating population bottlenecks in tree establishment.


Subject(s)
Environment , Trees/growth & development , Ecosystem , Models, Theoretical
7.
Proc Biol Sci ; 286(1894): 20182504, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30963857

ABSTRACT

Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (N2O), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps. Here, we demonstrate that refuse piles created by LCA species Atta colombica in tropical rainforests of Costa Rica provide ideal conditions for extremely high rates of N2O production (high microbial biomass, potential denitrification enzyme activity, N content and anoxia) and may represent an unappreciated source of heterogeneity in tropical forest N2O emissions. Average instantaneous refuse pile N2O fluxes surpassed background emissions by more than three orders of magnitude (in some cases exceeding 80 000 µg N2O-N m-2 h-1) and generating fluxes comparable to or greater than those produced by engineered systems such as wastewater treatment tanks. Refuse-concentrating Atta species are ubiquitous in tropical forests, pastures and production ecosystems, and increase density strongly in response to disturbance. As such, LCA colonies may represent an unrecognized greenhouse gas point source throughout the Neotropics.


Subject(s)
Ants/physiology , Nitrous Oxide/analysis , Rainforest , Soil/chemistry , Animals , Costa Rica , Feeding Behavior
8.
Proc Natl Acad Sci U S A ; 116(14): 6891-6896, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877251

ABSTRACT

Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.


Subject(s)
Biodiversity , Models, Biological
9.
Front Microbiol ; 10: 3, 2019.
Article in English | MEDLINE | ID: mdl-30723459

ABSTRACT

Respiratory ammonification and denitrification are two evolutionarily unrelated dissimilatory nitrogen (N) processes central to the global N cycle, the activity of which is thought to be controlled by carbon (C) to nitrate (NO3 -) ratio. Here we find that Intrasporangium calvum C5, a novel dual-pathway denitrifier/respiratory ammonifier, disproportionately utilizes ammonification rather than denitrification when grown under low C concentrations, even at low C:NO3 - ratios. This finding is in conflict with the paradigm that high C:NO3 - ratios promote ammonification and low C:NO3 - ratios promote denitrification. We find that the protein atomic composition for denitrification modules (NirK) are significantly cost minimized for C and N compared to ammonification modules (NrfA), indicating that limitation for C and N is a major evolutionary selective pressure imprinted in the architecture of these proteins. The evolutionary precedent for these findings suggests ecological importance for microbial activity as evidenced by higher growth rates when I. calvum grows predominantly using its ammonification pathway and by assimilating its end-product (ammonium) for growth under ammonium-free conditions. Genomic analysis of I. calvum further reveals a versatile ecophysiology to cope with nutrient stress and redox conditions. Metabolite and transcriptional profiles during growth indicate that enzyme modules, NrfAH and NirK, are not constitutively expressed but rather induced by nitrite production via NarG. Mechanistically, our results suggest that pathway selection is driven by intracellular redox potential (redox poise), which may be lowered when resource concentrations are low, thereby decreasing catalytic activity of upstream electron transport steps (i.e., the bc1 complex) needed for denitrification enzymes. Our work advances our understanding of the biogeochemical flexibility of N-cycling organisms, pathway evolution, and ecological food-webs.

10.
Ecology ; 100(4): e02641, 2019 04.
Article in English | MEDLINE | ID: mdl-30712256

ABSTRACT

High rates of land conversion and land use change have vastly increased the proportion of secondary forest in the lowland tropics relative to mature forest. As secondary forests recover following abandonment, nitrogen (N) and phosphorus (P) must be present in sufficient quantities to sustain high rates of net primary production and to replenish the nutrients lost during land use prior to secondary forest establishment. Biogeochemical theory and results from individual studies suggest that N can recuperate during secondary forest recovery, especially relative to P. Here, we synthesized 23 metrics of N and P in soil and plants from 45 secondary forest chronosequences located in the wet tropics to empirically explore (1) whether there is a consistent change in nutrients and nutrient cycling processes during secondary succession in the biome; (2) which metrics of N and P in soil and plants recuperate most consistently; (3) if the recuperation of nutrients during succession approaches similar nutrient concentrations and fluxes as those in mature forest in ~100 yr following the initiation of succession; and (4) whether site characteristics, including disturbance history, climate, and soil order are significantly related to nutrient recuperation. During secondary forest succession, nine metrics of N and/or P cycling changed consistently and substantially. In most sites, N concentrations and fluxes in both plants and soil increased during secondary succession, and total P concentrations increased in surface soil. Changes in nutrient concentrations and nutrient cycling processes during secondary succession were similar whether mature forest was included or excluded from the analysis, indicating that nutrient recuperation in secondary forest leads to biogeochemical conditions that are similar to those of mature forest. Further, of the N and P metrics that recuperated, only soil total P and foliar δ15 N were strongly influenced by site characteristics like climate, soils, or disturbance history. Predictable nutrient recuperation across a diverse and productive ecosystem may support future forest growth and could provide a means to quantify successful restoration of ecosystem function in secondary tropical forest beyond biomass or species composition.


Subject(s)
Ecosystem , Trees , Forests , Nitrogen , Phosphorus , Soil , Tropical Climate
11.
PLoS One ; 13(10): e0205760, 2018.
Article in English | MEDLINE | ID: mdl-30335842

ABSTRACT

Restoration of agricultural fields is challenging, especially in arid and semi-arid ecosystems. We conducted experiments in two fields in the Great Basin, USA, which differed in cultivation history and fertility. We tested the effects of different levels of functional diversity (planting grasses and shrubs together, vs. planting shrubs alone), seed source (cultivars, local or distant wild-collections), and irrigation regime (spring or fall and spring) on restoration outcomes. We sowed either: 1) grasses and shrubs in year one, 2) shrubs only, in year one, 3) grasses in year one with herbicide, shrubs in year two, or 4) shrubs alone in year two, after a year of herbicide. We irrigated for two years and monitored for three years. Shrub emergence was highest in the lower fertility field, where increasing functional diversity by seeding grasses had a neutral or facilitative effect on shrub emergence. In the higher fertility field, increasing functional diversity appeared to have a neutral to competitive effect. After declines in shrub densities after irrigation ceased, these effects did not persist. Grasses initially suppressed or had a neutral effect on weeds relative to an unseeded control, but had neutral or facilitative effects on weeds relative to shrub-only seeding. Initially, commercial grasses were either equivalent to or outperformed wild-collected grasses, but after irrigation ceased, commercial grasses were outperformed by wild-collected grasses in the higher fertility field. Local shrubs initially outperformed distant shrubs, but this effect did not persist. Fall and spring irrigation combined with local shrubs and wild-collected grasses was the most successful strategy in the higher fertility field, while in the lower fertility field, irrigation timing had fewer effects. Superior shrub emergence and higher grass persistence indicated that the use of wild and local seed sources is generally warranted, whereas the effects of functional diversity and irrigation regime were context-dependent. A bet-hedging approach that uses a variety of strategies may maximize the chances of restoration success.


Subject(s)
Agriculture/methods , Environmental Restoration and Remediation/methods , Poaceae/physiology , Seeds/physiology , Biodiversity , Fertility , Herbicides/administration & dosage , Plant Weeds/drug effects , Plant Weeds/physiology , Seasons , Soil/chemistry , United States
12.
PLoS One ; 13(7): e0198997, 2018.
Article in English | MEDLINE | ID: mdl-29975686

ABSTRACT

Though citizen science programs have been broadly successful in diverse scientific fields, their adoption has lagged in some disciplines, including soil science and ecosystem ecology. Collaborations with citizen scientists may be viewed as a conundrum in these disciplines, which often require substantial labor and technical experience; citizen scientists could improve sampling capacity but may reduce sample quality or require training and oversight prior to and while performing specialized tasks. To demonstrate the feasibility of incorporating citizen scientists into soil biogeochemistry research, we conducted a proof-of-concept study in high-elevation meadows of the Sierra Nevada in California. A collaboration between university researchers and citizen scientists allowed us to assess spatial and diel patterns of soil greenhouse gas (GHG) fluxes with an intensity and frequency that would otherwise be beyond the capacity of a typical research laboratory. This collaboration with citizen scientists increased our sampling intensity by over 700% while only doubling the sampling error relative to that of full-time researchers. With training and support from project scientists, citizen scientists collected data that demonstrate spatial independence of carbon dioxide, methane, and nitrous oxide at scales between 1 m and 175 m. Additionally, we found a lack of temporal variation over a 24-h period for all three GHGs. Citizen scientists participating in this one-day event reported levels of satisfaction commensurate with longer-term, immersive campaigns. The place-based event also proved an effective tool for teaching intangible concepts of soil biogeochemistry and promoting local conservation. Despite perceived barriers to entry, this study demonstrates the mutual benefits of citizen science collaborations in soil science and ecosystem ecology, encouraging adoption by disciplines that have been slow to take advantage of such collaborations. Short-term, local citizen science events can provide meaningful experiences for area residents and teach global biogeochemical cycles in a place-based context.


Subject(s)
Ecology , Ecosystem , Greenhouse Gases , Soil , California , Carbon Dioxide/adverse effects , Environmental Monitoring , Greenhouse Effect , Greenhouse Gases/chemistry , Humans , Methane/adverse effects , Nevada , Nitrous Oxide/adverse effects
13.
Ecology ; 99(9): 2080-2089, 2018 09.
Article in English | MEDLINE | ID: mdl-29931744

ABSTRACT

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2 O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three-fold higher total mean N2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2 O emissions in heterogeneous landscapes.


Subject(s)
Nitrogen/analysis , Nitrous Oxide , Ecosystem , Rainforest , Soil/chemistry
14.
Oecologia ; 185(3): 513-524, 2017 11.
Article in English | MEDLINE | ID: mdl-28983721

ABSTRACT

A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.


Subject(s)
Ecosystem , Nitrogen/chemistry , Phosphorus/chemistry , Soil Microbiology , Soil/chemistry , Alaska , Food , Ice Cover , Peru , Phylogeny , Washington
15.
Ecol Lett ; 20(6): 779-788, 2017 06.
Article in English | MEDLINE | ID: mdl-28414883

ABSTRACT

Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth.


Subject(s)
Carbon Cycle , Temperature , Tropical Climate , Carbon , Forests , Soil , Trees
16.
Ecol Lett ; 17(10): 1282-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25070023

ABSTRACT

Paradoxically, symbiotic dinitrogen (N2 ) fixers are abundant in nitrogen (N)-rich, phosphorus (P)-poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N-rich enzymes (phosphatases) that mineralise organic P than non-N2 fixers. We assessed soil and root phosphatase activity between fixers and non-fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non-fixers. Root phosphatase activity and AM colonisation were higher for fixers than non-fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N-P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.


Subject(s)
Forests , Mycorrhizae/physiology , Nitrogen Fixation , Phosphorus/metabolism , Plant Roots/enzymology , Soil/chemistry , Costa Rica , Phosphoric Monoester Hydrolases/metabolism , Plant Roots/microbiology , Rhizosphere , Tropical Climate
17.
Ecology ; 95(3): 668-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24804451

ABSTRACT

Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.


Subject(s)
Ecosystem , Fertilizers , Soil , Trees , Animals , Environmental Monitoring , Hawaii , Research Design , Time Factors , Tropical Climate
18.
Proc Natl Acad Sci U S A ; 111(22): 8101-6, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843146

ABSTRACT

Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.


Subject(s)
Ecosystem , Fabaceae/metabolism , Nitrogen Cycle , Nitrogen Fixation , Trees , Agriculture , Biomass , Costa Rica , Environment , Human Activities , Humans , Models, Theoretical , Symbiosis , Tropical Climate
20.
Glob Chang Biol ; 19(7): 2149-57, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23526765

ABSTRACT

In humid ecosystems, the rate of methane (CH4 ) oxidation by soil-dwelling methane-oxidizing bacteria (MOB) is controlled by soil texture and soil water holding capacity, both of which limit the diffusion of atmospheric CH4 into the soil. However, it remains unclear whether these same mechanisms control CH4 oxidation in more arid soils. This study was designed to measure the proximate controls of potential CH4 oxidation in semiarid soils during different seasons. Using a unique and well-constrained 3-million-year-old semiarid substrate age gradient, we were able to hold state factors constant while exploring the relationship between seasonal potential CH4 oxidation rates and soil texture, soil water holding capacity, and dissolved organic carbon (DOC). We measured unexpectedly higher rates of potential CH4 oxidation in the wet season than the dry season. Although other studies have attributed low CH4 oxidation rates in dry soils to desiccation of MOB, we present several lines of evidence that this may be inaccurate. We found that soil DOC concentration explained CH4 oxidation rates better than soil physical factors that regulate the diffusion of CH4 from the atmosphere into the soil. We show evidence that MOB facultatively incorporated isotopically labeled glucose into their cells, and MOB utilized glucose in a pattern among our study sites that was similar to wet-season CH4 oxidation rates. This evidence suggests that DOC, which is utilized by MOB in other environments with varying effects on CH4 oxidation rates, may be an important regulator of CH4 oxidation rates in semiarid soils. Our collective understanding of the facultative use of DOC by MOB is still in its infancy, but our results suggest it may be an important factor controlling CH4 oxidation in soils from dry ecosystems.


Subject(s)
Carbon/chemistry , Methane/chemistry , Soil/chemistry , Water/chemistry , Greenhouse Effect , Oxidation-Reduction , San Francisco , Seasons , Soil Microbiology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...