Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38853937

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by better and earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects (NLME) modelling have been applied to model the trajectories of antidepressant response (or non-response) to TMS, but it is not known whether such models can predict clinical outcomes. We compared LCMM and NLME approaches to model the antidepressant response to TMS in a naturalistic sample of 238 patients receiving rTMS for treatment resistant depression (TRD), across multiple coils and protocols. We then compared the predictive power of those models. LCMM trajectories were influenced largely by baseline symptom severity, but baseline symptoms provided little predictive power for later antidepressant response. Rather, the optimal LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = [0.52-0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks of treatment (AUC = 0.76, 95% CI = [0.58 - 0.94], but likewise, not before. In showing the predictive validity of these approaches to model response trajectories to rTMS, we provided preliminary evidence that trajectory modeling could be used to guide future treatment decisions.

2.
Am J Psychiatry ; 180(9): 645-659, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37073513

ABSTRACT

Investigators from minoritized backgrounds are underrepresented in psychiatric research. That underrepresentation contributes to disparities in outcomes of access to mental health care. Drawing on lived experience, scholarly qualitative reports, and empirical data, the authors review how the underrepresentation of minoritized researchers arises from interlocking, self-reinforcing effects of structural biases in our research training and funding institutions. Minoritized researchers experience diminished early access to advanced training and opportunities, stereotype threats and microaggressions, isolation due to lack of peers and senior mentors, decreased access to early funding, and unique community and personal financial pressures. These represent structural racism-a system of institutional assumptions and practices that perpetuates race-based disparities, in spite of those institutions' efforts to increase diversity and in contradiction to the values that academic leaders outwardly espouse. The authors further review potential approaches to reversing these structural biases, including undergraduate-focused research experiences, financial support for faculty who lead training/mentoring programs, targeted mentoring through scholarly societies, better use of federal diversity supplement funding, support for scientific reentry, cohort building, diversity efforts targeting senior leadership, and rigorous examination of hiring, compensation, and promotion practices. Several of these approaches have empirically proven best practices and models for dissemination. If implemented alongside outcome measurement, they have the potential to reverse decades of structural bias in psychiatry and psychiatric research.


Subject(s)
Biomedical Research , Mentoring , Humans , Minority Groups , Systemic Racism , Workforce
3.
bioRxiv ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38234810

ABSTRACT

Measuring the function of decision-making systems is a central goal of computational psychiatry. Individual measures of decisional function could be used to describe neurocognitive profiles that underpin psychopathology and offer insights into deficits that are shared across traditional diagnostic classes. However, there are few demonstrably reliable and mechanistically relevant metrics of decision making that can accurately capture the complex overlapping domains of cognition whilst also quantifying the heterogeneity of function between individuals. The WebSurf task is a reverse-translational human experiential foraging paradigm which indexes naturalistic and clinically relevant decision-making. To determine its potential clinical utility, we examined the psychometric properties and clinical correlates of behavioural parameters extracted from WebSurf in an initial exploratory experiment and a pre-registered validation experiment. Behaviour was stable over repeated administrations of the task, as were individual differences. The ability to measure decision making consistently supports the potential utility of the task in predicting an individual's propensity for response to psychiatric treatment, in evaluating clinical change during treatment, and in defining neurocognitive profiles that relate to psychopathology. Specific aspects of WebSurf behaviour also correlate with anhedonic and externalising symptoms. Importantly, these behavioural parameters may measure dimensions of psychological variance that are not captured by traditional rating scales. WebSurf and related paradigms might therefore be useful platforms for computational approaches to precision psychiatry.

4.
Neuroimage ; 225: 117515, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33137473

ABSTRACT

Deep brain stimulation (DBS) is a promising intervention for treatment-resistant psychiatric disorders, particularly major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Up to 90% of patients who have not recovered with therapy or medication have reported benefit from DBS in open-label studies. Response rates in randomized controlled trials (RCTs), however, have been much lower. This has been argued to arise from surgical variability between sites, and recent psychiatric DBS research has focused on refining targeting through personalized imaging. Much less attention has been given to the fact that psychiatric disorders arise from dysfunction in distributed brain networks, and that DBS likely acts by altering communication within those networks. This is in part because psychiatric DBS research relies on subjective rating scales that make it difficult to identify network biomarkers. Here, we overview recent DBS RCT results in OCD and MDD, as well as the follow-on imaging studies. We present evidence for a new approach to studying DBS' mechanisms of action, focused on measuring objective cognitive/emotional deficits that underpin these and many other mental disorders. Further, we suggest that a focus on cognition could lead to reliable network biomarkers at an electrophysiologic level, especially those related to inter-regional synchrony of the local field potential (LFP). Developing the network neuroscience of DBS has the potential to finally unlock the potential of this highly specific therapy.


Subject(s)
Deep Brain Stimulation/methods , Depressive Disorder, Major/therapy , Gyrus Cinguli , Internal Capsule , Medial Forebrain Bundle , Obsessive-Compulsive Disorder/therapy , Subthalamic Nucleus , Ventral Striatum , Depressive Disorder, Major/physiopathology , Humans , Neural Pathways , Obsessive-Compulsive Disorder/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...