Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(41): 15933-15946, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30158245

ABSTRACT

Cardiolipin (CL) is an anionic phospholipid mainly located in the inner mitochondrial membrane, where it helps regulate bioenergetics, membrane structure, and apoptosis. Localized, phase-segregated domains of CL are hypothesized to control mitochondrial inner membrane organization. However, the existence and underlying mechanisms regulating these mitochondrial domains are unclear. Here, we first isolated detergent-resistant cardiac mitochondrial membranes that have been reported to be CL-enriched domains. Experiments with different detergents yielded only nonspecific solubilization of mitochondrial phospholipids, suggesting that CL domains are not recoverable with detergents. Next, domain formation was investigated in biomimetic giant unilamellar vesicles (GUVs) and newly synthesized giant mitochondrial vesicles (GMVs) from mouse hearts. Confocal fluorescent imaging revealed that introduction of cytochrome c into membranes promotes macroscopic proteolipid domain formation associated with membrane morphological changes in both GUVs and GMVs. Domain organization was also investigated after lowering tetralinoleoyl-CL concentration and substitution with monolyso-CL, two common modifications observed in cardiac pathologies. Loss of tetralinoleoyl-CL decreased proteolipid domain formation in GUVs, because of a favorable Gibbs-free energy of lipid mixing, whereas addition of monolyso-CL had no effect on lipid mixing. Moreover, murine GMVs generated from cardiac acyl-CoA synthetase-1 knockouts, which have remodeled CL acyl chains, did not perturb proteolipid domains. Finally, lowering the tetralinoleoyl-CL content had a stronger influence on the oxidation status of cytochrome c than did incorporation of monolyso-CL. These results indicate that proteolipid domain formation in the cardiac mitochondrial inner membrane depends on tetralinoleoyl-CL concentration, driven by underlying lipid-mixing properties, but not the presence of monolyso-CL.


Subject(s)
Cardiolipins/metabolism , Membrane Microdomains/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Proteolipids/metabolism , Unilamellar Liposomes/metabolism , Animals , Biomimetic Materials/metabolism , Coenzyme A Ligases/genetics , Cytochromes c/metabolism , Gene Knockdown Techniques , Lysophospholipids/metabolism , Male , Mice, Inbred C57BL , Myocardium/metabolism , Rats, Sprague-Dawley
2.
Adv Nutr ; 9(3): 247-262, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29767698

ABSTRACT

Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.


Subject(s)
Diet , Dietary Fats/pharmacology , Fatty Acids, Omega-3/pharmacology , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Animals , Dietary Fats/metabolism , Fatty Acids, Omega-3/metabolism , Humans , Metabolic Diseases/metabolism
3.
J Biol Chem ; 293(2): 466-483, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29162722

ABSTRACT

Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.


Subject(s)
Docosahexaenoic Acids/pharmacology , Linoleic Acid/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Phospholipids/metabolism , Cardiolipins/metabolism , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Unsaturated/metabolism , Heart/drug effects , Humans , Mass Spectrometry , Mitochondria, Heart/drug effects , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
4.
J Immunol ; 198(12): 4738-4752, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28500069

ABSTRACT

Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B cell function. However, there is limited information about the influence of obesity on B cell function and underlying factors that modulate B cell responses. Therefore, we studied B cell cytokine secretion and/or Ab production across obesity models. In obese humans, B cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B cells. Furthermore, the high fat diet lowered bone marrow B cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA). DHA, an essential fatty acid with immunomodulatory properties, was tested because its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished Ab titers whereas the Western diet plus DHA improved titers. Mechanistically, DHA did not directly target B cells to elevate Ab levels. Instead, DHA increased the concentration of the downstream specialized proresolving lipid mediators (SPMs) 14-hydroxydocosahexaenoic acid, 17-hydroxydocosahexaenoic acid, and protectin DX. All three SPMs were found to be effective in elevating murine Ab levels upon influenza infection. Collectively, the results demonstrate that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.


Subject(s)
B-Lymphocytes/immunology , Fatty Acids, Essential/immunology , Immunity, Humoral , Interleukin-6/metabolism , Obesity/immunology , Orthomyxoviridae Infections/immunology , Animals , Diet, Western , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/immunology , Fatty Acids, Essential/blood , Humans , Immunoglobulin M/blood , Influenza A virus/immunology , Interleukin-6/immunology , Lymphocyte Activation , Mice , Obesity/complications , Orthomyxoviridae Infections/complications , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
5.
J Nutr Biochem ; 45: 94-103, 2017 07.
Article in English | MEDLINE | ID: mdl-28437736

ABSTRACT

Cardiac phospholipids, notably cardiolipin, undergo acyl chain remodeling and/or loss of content in aging and cardiovascular diseases, which is postulated to mechanistically impair mitochondrial function. Less is known about how diet-induced obesity influences cardiac phospholipid acyl chain composition and thus mitochondrial responses. Here we first tested if a high fat diet remodeled murine cardiac mitochondrial phospholipid acyl chain composition and consequently disrupted membrane packing, supercomplex formation and respiratory enzyme activity. Mass spectrometry analyses revealed that mice consuming a high fat diet displayed 0.8-3.3 fold changes in cardiac acyl chain remodeling of cardiolipin, phosphatidylcholine, and phosphatidylethanolamine. Biophysical analysis of monolayers constructed from mitochondrial phospholipids of obese mice showed impairment in the packing properties of the membrane compared to lean mice. However, the high fat diet, relative to the lean controls, had no influence on cardiac mitochondrial supercomplex formation, respiratory enzyme activity, and even respiration. To determine if the effects were tissue specific, we subsequently conducted select studies with liver tissue. Compared to the control diet, the high fat diet remodeled liver mitochondrial phospholipid acyl chain composition by 0.6-5.3-fold with notable increases in n-6 and n-3 polyunsaturation. The remodeling in the liver was accompanied by diminished complex I to III respiratory enzyme activity by 3.5-fold. Finally, qRT-PCR analyses demonstrated an upregulation of liver mRNA levels of tafazzin, which contributes to cardiolipin remodeling. Altogether, these results demonstrate that diet-induced obesity remodels acyl chains in the mitochondrial phospholipidome and exerts tissue specific impairments of respiratory enzyme activity.


Subject(s)
Diet, High-Fat/adverse effects , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Phospholipids/metabolism , Acyltransferases , Animals , Cardiolipins/metabolism , Cell Respiration , Electron Transport Complex III/metabolism , Enzymes/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/pathology , Mitochondria, Liver/pathology , Oxidative Phosphorylation , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Phospholipids/chemistry , Transcription Factors/genetics
6.
Biochim Biophys Acta Biomembr ; 1859(2): 257-267, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889304

ABSTRACT

Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2)4] CL content decreased the excess area/molecule. Replacement of (18:2)4CL acyl chains with tetraoleoyl [(18:1)4] CL or tetradocosahexaenoyl [(22:6)4] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2)4CL acyl chains with tetramyristoyl [(14:0)4] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2)4CL with (18:1)4CL or (22:6)4CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0)4CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2)4CL content and substitution of (18:2)4CL with (14:0)4CL or (22:6)4CL. Conversely, exchanging (18:2)4CL with (18:1)4CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics.


Subject(s)
Cardiolipins/metabolism , Membranes/metabolism , Mitochondrial Membranes/metabolism , Animals , Biomimetics/methods , Cattle , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Mitochondria/metabolism , Phosphatidylcholines/metabolism , Transition Temperature , Unilamellar Liposomes/metabolism
7.
Biochemistry ; 53(35): 5589-91, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25145682

ABSTRACT

Activities of the enzymes involved in cellular respiration are markedly influenced by the composition of the phospholipid environment of the inner mitochondrial membrane. Contrary to previous suppositions, we show that fusion of mitochondria isolated from healthy cardiac muscle with cardiolipin or dioleoylphosphatidylcholine results in a 2-6-fold reduction in the activity of complexes I, II, and IV. The activity of complex III was unaffected by increased phospholipid levels. Phospholipid content had an indiscriminate yet detrimental effect on the combined activities of complexes I+III and II+III. These results have strong implications for therapeutic lipid replacement strategies, in which phospholipid modification of the mitochondria is proposed to enhance mitochondrial function.


Subject(s)
Electron Transport Chain Complex Proteins/metabolism , Mitochondria, Heart/metabolism , Phospholipids/metabolism , Animals , Cardiolipins/metabolism , Cell Respiration/physiology , Electron Transport , Membrane Lipids/metabolism , Mitochondrial Membranes/metabolism , NAD/metabolism , Oxidation-Reduction , Phosphatidylcholines/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...