Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 41(14): 5063-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17711224

ABSTRACT

A new method to achieve steady-state and dynamic-tracking desorption of organic compounds from activated carbon was developed and tested with a bench-scale system. Activated carbon fiber cloth (ACFC) was used to adsorb methyl ethyl ketone (MEK) from air streams. Direct electrothermal heating was then used to desorb the vapor to generate select vapor concentrations at 500 ppmv and 5000 ppmv in air. Dynamic-tracking desorption was also achieved with carefully controlled yet variable vapor concentrations between 250 ppmv and 5000 ppmv, while also allowing the flow rate of the carrier gas to change by 100%. These results were also compared to conditions when recovering MEK as a liquid, and using microwaves as the source of energy to regenerate the adsorbent to provide MEK as a vapor or a liquid.


Subject(s)
Carbon/chemistry , Organic Chemicals/chemistry , Adsorption
2.
Environ Sci Technol ; 38(18): 4865-77, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15487798

ABSTRACT

Capture and recovery of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from gas streams using physical adsorption onto activated carbon fiber cloth (ACFC) is demonstrated on the bench-scale. This system is regenerated electrothermally, by passing an electric current directly through the ACFC. The adsorbate desorbs from the ACFC, rapidly condenses on the inside walls of the adsorber, and then drains from the adsorber as a pure liquid. Rapid electrothermal desorption exhibits such unique characteristics as extremely low purge gas flow rate, rapid rate of ACFC heating, rapid mass transfer kinetics inherent to ACFC, and in-vessel condensation. An existing system was scaled up 500%, and the new system was modeled using material and energy balances. Adsorption isotherms using methyl ethyl ketone (MEK) and ACFC were obtained while electricity passed through the ACFC and at temperatures above MEK's boiling point. These isotherms agreed within 7% to Dubinin-Radushkevich modeled isotherms that were extrapolated from independently determined gravimetric measurements obtained at lower temperatures. Energy and material balances for the electrothermal desorption of organic vapors and ACFC agree to within 7% of experimentally measured values. These results allow the modeling of electrothermal desorption of organic vapors from gas streams with in-vessel condensation to optimize operating conditions of the system during regeneration of the adsorbent.


Subject(s)
Carbon/chemistry , Environmental Monitoring/methods , Adsorption , Butanones/analysis , Butanones/chemistry , Carbon Fiber , Charcoal/chemistry , Electricity , Environmental Monitoring/instrumentation , Hot Temperature , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...