Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(10): 1958-1973, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35046121

ABSTRACT

The superficial dorsal horn (SDH) of the spinal cord represents the first site of integration between innocuous and noxious somatosensory stimuli. According to gate control theory, diverse populations of excitatory and inhibitory interneurons within the SDH are activated by distinct sensory afferents, and their interplay determines the net nociceptive output projecting to higher pain centers. Although specific SDH cell types are ill defined, numerous classifications schemes find that excitatory and inhibitory neurons fundamentally differ in their morphology, electrophysiology, neuropeptides, and pain-associated plasticity; yet little is known about how these neurons respond over a range of natural innocuous and noxious stimuli. To address this question, we applied an in vivo imaging approach in male mice where the genetically encoded calcium indicator GCaMP6s was expressed either in vGluT2-positive excitatory or vIAAT-positive inhibitory neurons. We found that inhibitory neurons were markedly more sensitive to innocuous touch than excitatory neurons but still responded dynamically over a wide range of noxious mechanical stimuli. Inhibitory neurons were also less sensitive to thermal stimuli than their excitatory counterparts. In a capsaicin model of acute pain sensitization, the responses of excitatory neurons were significantly potentiated to innocuous and noxious mechanical stimuli, whereas inhibitory neural responses were only depressed to noxious stimuli. These in vivo findings show that excitatory and inhibitory SDH neurons diverge considerably in their somatosensory responses and plasticity, as postulated by gate control theory.SIGNIFICANCE STATEMENT Gate control theory posits that opposing spinal excitatory and inhibitory neurons, differently tuned across somatosensory modalities, determine the net nociceptive output to higher pain centers. Little is known about how natural stimuli activate these two neural populations. This study applied an in vivo calcium imaging approach to genetically target these neurons and contrast their responses over a range of innocuous and noxious mechanical and thermal stimuli. Compared with excitatory neurons, we found that inhibitory neurons are more sensitive to innocuous touch and far less sensitive to thermal stimuli. An acute model of pain also revealed that these subtypes undergo divergent mechanosensory plasticity. Our data provide important and novel insights for gate-control inspired models of pain processing.


Subject(s)
Calcium , Spinal Cord Dorsal Horn , Animals , Calcium/metabolism , Male , Mice , Neurons/physiology , Pain/metabolism , Posterior Horn Cells/metabolism , Spinal Cord/physiology
2.
Mol Pain ; 18: 17448069221079559, 2022.
Article in English | MEDLINE | ID: mdl-35088625

ABSTRACT

Neurostimulation therapies are frequently used in patients with chronic pain conditions. They emerged from Gate Control Theory (GCT), which posits that Aß-fiber activation recruits superficial dorsal horn (SDH) inhibitory networks to "close the gate" on nociceptive transmission, resulting in pain relief. However, the efficacy of current therapies is limited, and the underlying circuits remain poorly understood. For example, it remains unknown whether ongoing stimulation of Aß-fibers is sufficient to drive activity in SDH neurons. We used multiphoton microscopy in spinal cords extracted from mice expressing the genetically encoded calcium indicator GCaMP6s in glutamatergic and GABAergic populations; activity levels were inferred from deconvolved calcium signals using CaImAn software. Sustained Aß-fiber stimulation at the dorsal columns or dorsal roots drove robust yet transient activation of both SDH populations. Following the initial increase, activity levels decreased below baseline in glutamatergic neurons and were depressed after stimulation ceased in both populations. Surprisingly, only about half of GABAergic neurons responded to Aß-fiber stimulation. This subset showed elevated activity for the entire duration of stimulation, while non-responders decreased with time. Our findings suggest that Aß-fiber stimulation initially recruits both excitatory and inhibitory populations but has divergent effects on their activity, providing a foundation for understanding the analgesic effects of neurostimulation devices.Perspective: This article used microscopy to characterize the responses of mouse spinal cord cells to stimulation of non-painful nerve fibers. These findings deepen our understanding of how the spinal cord processes information and provide a foundation for improving pain-relieving therapies.


Subject(s)
Posterior Horn Cells , Spinal Cord Dorsal Horn , Animals , Humans , Mice , Nerve Fibers , Pain , Posterior Horn Cells/physiology , Spinal Cord , Spinal Nerve Roots
3.
J Neurosci ; 37(25): 6007-6020, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28559374

ABSTRACT

In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically influence the distribution, gating, and pharmacology of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. We found that the Type I TARP γ-2 (stargazin) is present in lamina II of the superficial dorsal horn, an area involved in nociception. Consistent with the notion that γ-2 is associated with surface AMPARs, CNQX, a partial agonist at AMPARs associated with Type I TARPs, evoked whole-cell currents in lamina II neurons, but such currents were severely attenuated in γ-2-lacking stargazer (stg/stg) mice. Examination of EPSCs revealed the targeting of γ-2 to be synapse-specific; the amplitude of spontaneously occurring miniature EPSCs (mEPSCs) was reduced in neurons from stg/stg mice, but the amplitude of capsaicin-induced mEPSCs from C-fiber synapses was unaltered. This suggests that γ-2 is associated with AMPARs at synapses in lamina II but excluded from those at C-fiber inputs, a view supported by our immunohistochemical colabeling data. Following induction of peripheral inflammation, a model of hyperalgesia, there was a switch in the current-voltage relationships of capsaicin-induced mEPSCs, from linear to inwardly rectifying, indicating an increased prevalence of calcium-permeable (CP) AMPARs. This effect was abolished in stg/stg mice. Our results establish that, although γ-2 is not typically associated with calcium-impermeable AMPARs at C-fiber synapses, it is required for the translocation of CP-AMPARs to these synapses following peripheral inflammation.SIGNIFICANCE STATEMENT In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically determine the functional properties of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. An increase in the excitability of neurons within the superficial dorsal horn (SDH) of the spinal cord is thought to underlie heighted pain sensitivity. One mechanism considered to contribute to such long-lived changes is the remodeling of the ionotropic AMPA-type glutamate receptors that underlie fast excitatory synaptic transmission in the SDH. Here we show that the TARP γ-2 (stargazin) is present in SDH neurons and is necessary in a form of inflammatory pain-induced plasticity, which involves an increase in the prevalence of synaptic calcium-permeable AMPARs.


Subject(s)
Calcium Channels/metabolism , Inflammation/metabolism , Neuronal Plasticity/physiology , Posterior Horn Cells/metabolism , Receptors, AMPA/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Calcium Channels/genetics , Capsaicin/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Female , Male , Mice , Mice, Inbred C57BL , Nerve Fibers, Unmyelinated/drug effects , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Receptors, AMPA/agonists , Synaptic Transmission/genetics
4.
J Neurophysiol ; 108(4): 1044-51, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22592312

ABSTRACT

NMDA receptor (NMDAR) activation requires coincident binding of the excitatory neurotransmitter glutamate and a coagonist, either glycine or D-serine. Changes in NMDAR currents during neural transmission are typically attributed to glutamate release against a steady background of coagonist, excluding the possibility of coagonist release. AMPA receptor (AMPAR) stimulation evokes D-serine release, but it is unknown whether this is a physiological phenomenon capable of influencing synaptic responses. In this study, we utilized the intact retina to determine whether light-evoked synaptic activity in retinal ganglion cells (RGCs) is shaped by a dynamic pool of coagonist. The application of AMPAR antagonist abolished light-evoked NMDAR currents, which were rescued by adding coagonist to the bath. When NMDA was globally applied to RGCs via bath or picospritzing, the coagonist occupancy was also dependent on AMPARs but to a lesser extent than that observed during light responses, suggesting a difference in extrasynaptic coagonist regulation. By saturating the glutamate binding site of NMDARs, we were able to detect released coagonist reaching RGCs during light-evoked responses. Mutant mice lacking the d-serine-synthesizing enzyme serine racemase were deficient in coagonist release. Coagonist release in wild-type retinas was notably greater in ON than in OFF responses and depended on AMPARs. These findings suggest activity-dependent modulation of coagonist availability, particularly D-serine, and may add an extra dimension to NMDAR coincidence detection in the retina.


Subject(s)
Photic Stimulation/methods , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Retinal Ganglion Cells/metabolism , Serine/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Retina/drug effects , Retina/metabolism , Retinal Ganglion Cells/drug effects
5.
J Physiol ; 589(Pt 24): 5997-6006, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22041185

ABSTRACT

Glycine and/or D-serine are obligatory coagonists of the N-methyl-D-aspartate receptor (NMDAR). Serine racemase, the D-serine-synthesizing enzyme, is expressed by astrocytes and Müller cells of the retina, but little is known about its role in retinal signalling. In this study, we utilize a serine racemase knockout (SRKO) mouse to explore the contribution of D-serine to inner-retinal function. Retinal tissue levels of D-serine in SRKO mice are reduced by 85%. Whole-cell recordings from SRKO retinal ganglion cells showed markedly reduced coagonist occupancy of NMDARs and consequently a dramatic reduction in the NMDAR component of light-evoked responses. NMDAR currents in SRKOs could be rescued by applying exogenous coagonist, but SRKO ganglion cells still displayed lower NMDA/AMPA receptor ratios than wild-type (WT) controls when the coagonist site was saturated. Despite having abnormalities in synaptic glutamatergic transmission, SRKO mice displayed no obvious signs of visual impairment in behavioural testing. These findings raise interesting questions about the role of D-serine in inner-retinal function and development.


Subject(s)
Racemases and Epimerases/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Retinal Ganglion Cells/physiology , Serine/physiology , Vision, Ocular/physiology , Animals , Behavior, Animal , Light , Mice , Mice, Inbred C57BL , Mice, Knockout , Photic Stimulation , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics
6.
J Neurochem ; 115(6): 1681-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20969576

ABSTRACT

The N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is important in a number of different processes in the CNS, ranging from synaptic plasticity to disease states, including schizophrenia. D-serine appears to be the major co-agonist acting on retinal ganglion cell NMDA receptors, but the cell type from which it originates and whether its release can be modulated by activity are unknown. In this study, we utilized a mutant mouse line with elevated d-serine to investigate this question. Direct measurements of extracellular D-serine using capillary electrophoresis demonstrate that D-serine can be released from the intact mouse retina through an α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent mechanism. α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-evoked D-serine release persisted in the presence of a cocktail of neural inhibitors but was abolished after administration of a glial toxin. These findings provide the first evidence that extracellular D-serine levels in the retina can be modulated, and that such modulation is contingent upon glial cell activity.


Subject(s)
Neuroglia/metabolism , Receptors, AMPA/physiology , Retina/metabolism , Serine/metabolism , Animals , Electrophoresis, Capillary , Mice , Mice, Mutant Strains , Serine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...