Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(2): 180-189, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34985272

ABSTRACT

The electronic absorption spectrum of ß-carotene (ß-Car) is studied using quantum chemistry and quantum dynamics simulations. Vibrational normal modes were computed in optimized geometries of the electronic ground state S0 and the optically bright excited S2 state using the time-dependent density functional theory. By expressing the S2-state normal modes in terms of the ground-state modes, we find that no one-to-one correspondence between the ground- and excited-state vibrational modes exists. Using the ab initio results, we simulated the ß-Car absorption spectrum with all 282 vibrational modes in a model solvent at 300 K using the time-dependent Dirac-Frenkel variational principle and are able to qualitatively reproduce the full absorption line shape. By comparing the 282-mode model with the prominent 2-mode model, widely used to interpret carotenoid experiments, we find that the full 282-mode model better describes the high-frequency progression of carotenoid absorption spectra; hence, vibrational modes become highly mixed during the S0 → S2 optical excitation. The obtained results suggest that electronic energy dissipation is mediated by numerous vibrational modes.


Subject(s)
Quantum Theory , beta Carotene , Computer Simulation , Solvents , Vibration
2.
Chemistry ; 25(44): 10342-10349, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-30998263

ABSTRACT

Molecular rotors are a class of fluorophores that enable convenient imaging of viscosity inside microscopic samples such as lipid vesicles or live cells. Currently, rotor compounds containing a boron-dipyrromethene (BODIPY) group are among the most promising viscosity probes. In this work, it is reported that by adding heavy-electron-withdrawing -NO2 groups, the viscosity-sensitive range of a BODIPY probe is drastically expanded from 5-1500 cP to 0.5-50 000 cP. The improved range makes it, to our knowledge, the first hydrophobic molecular rotor applicable not only at moderate viscosities but also for viscosity measurements in highly viscous samples. Furthermore, the photophysical mechanism of the BODIPY molecular rotors under study has been determined by performing quantum chemical calculations and transient absorption experiments. This mechanism demonstrates how BODIPY molecular rotors work in general, why the -NO2 group causes such an improvement, and why BODIPY molecular rotors suffer from undesirable sensitivity to temperature. Overall, besides reporting a viscosity probe with remarkable properties, the results obtained expand the general understanding of molecular rotors and show a way to use the knowledge of their molecular action mechanism for augmenting their viscosity-sensing properties.

3.
J Phys Chem A ; 119(1): 56-66, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25476500

ABSTRACT

We report here the resonance Raman spectra and the quantum chemical calculations of the Raman spectra for ß-carotene and 13,13'-diphenyl-ß-carotene. The first aim of this approach was to test the robustness of the method used for modeling ß-carotene, and assess whether it could accurately predict the vibrational properties of derivatives in which conjugated substituents had been introduced. DFT calculations, using the B3LYP functional in combination with the 6-311G(d,p) basis set, were able to accurately predict the influence of two phenyl substituents connected to the ß-carotene molecule, although these deeply perturb the vibrational modes. This experimentally validated modeling technique leads to a fine understanding of the origin of the carotenoid resonance Raman bands, which are widely used for assessing the properties of these molecules, and in particular in complex media, such as binding sites provided by biological macromolecules.


Subject(s)
Carotenoids/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Spectrum Analysis, Raman
4.
J Phys Chem A ; 118(10): 1817-25, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24527866

ABSTRACT

Raman and electronic absorption spectra corresponding to the S0-S2 electronic transition of various carotenoid and polyene molecules are theoretically analyzed using the density functional theory (DFT) approach. The results demonstrate the linear dependence between the frequency of the so-called ν1 band corresponding to the C═C stretching modes in the Raman spectra and the S0-S2 electronic transition for molecules of different conjugation lengths. From these calculations the following relationship have been identified: (i) the effective conjugation length shortens in conformers of carotenoids containing ß-rings whereas it increases in polyene upon s-cis isomerization at their ends, (ii) methyl groups connected to the conjugated chain of carotenoids induce a splitting of the ν1 band in the Raman spectra, (iii) the effective conjugation lengths of all-trans-polyenes and corresponding all-trans-carotenoids are the same as follows from the Raman ν1 frequency, but they are different as defined from S0-S2 electronic transition energies. The results well correlate with the experimental observations.


Subject(s)
Carotenoids/chemistry , Electricity , Models, Molecular , Spectrum Analysis, Raman , Computer Simulation , Linear Models , Polyenes/chemistry
5.
J Phys Chem A ; 116(40): 9843-53, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22974387

ABSTRACT

Quantum chemical calculations have been employed for the investigation of the lowest excited electronic states of lutein, with particular reference to its function within light harvesting antenna complexes of higher plants. Through comparative analysis obtained by using different methods based on gas-phase calculations of the spectra, it was determined that variations in the lengths of the long C-C valence bonds and the dihedral angles of the polyene chain are the dominant factors in determining the spectral properties of Lut 1 and Lut 2 corresponding to the deformed lutein molecules taken from crystallographic data of the major pigment-protein complex of photosystem II. By MNDO-CAS-CI method, it was determined that the two singlet B(u) states of lutein (nominally 1B(u)(-)* and 1B(u)(+)) arise as a result of mixing of the canonical 1B(u)(-) and 1B(u)(+) states of the all-trans polyene due to the presence of the ending rings in lutein. The 1B(u)(-)* state of lutein is optically allowed, while the 1B(u)(-) of a pure all-trans polyene chain is optically forbidden. As demonstrated, the B(u) states are much more sensitive to minor distortions of the conjugated chain due to mixing of the canonical states, resulting in states of poorly defined particle-hole symmetry. Conversely, the A(g) states are relatively robust with respect to geometric distortion, and their respective inversion and particle-hole symmetries remain relatively well-defined.


Subject(s)
Lutein/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Spectrum Analysis
6.
J Phys Chem B ; 116(27): 7803-14, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22646307

ABSTRACT

Using the electrostatic model of intermolecular interactions, we obtain the Frenkel exciton Hamiltonian parameters for the chlorophyll Qy band of a photosynthetic peripheral light harvesting complex LH2 of a purple bacteria Rhodopseudomonas acidophila from structural data. The intermolecular couplings are mostly determined by the chlorophyll relative positions, whereas the molecular transition energies are determined by the background charge distribution of the whole complex. The protonation pattern of titratable residues is used as a tunable parameter. By studying several protonation state scenarios for distinct protein groups and comparing the simulated absorption and circular dichroism spectra to experiment, we determine the most probable configuration of the protonation states of various side groups of the protein.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Circular Dichroism , Models, Molecular , Protein Conformation , Rhodopseudomonas/chemistry , Spectrophotometry, Ultraviolet , Static Electricity
7.
J Phys Chem A ; 115(10): 1861-8, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21338165

ABSTRACT

Excited state relaxation of N-(triphenylmethyl)-salicylidenimine (MS1) in protic and aprotic solvents has been investigated by means of absorption pump-probe spectroscopy with femtosecond time resolution and fluorescence spectroscopy with picosecond time resolution. Short-lived excited states and long-lived photoproducts have been identified from the differential absorption spectra. Excited states and photoproducts were different under excitation of enol-closed and cis-keto tautomers. As a result, the commonly accepted excited state relaxation model of aromatic anils, which assumes an ultrafast transformation of excited enol-closed tautomers into cis-keto tautomers, has been modified. Performed quantum chemical calculations suggest that hydrogen-bonded ethanol molecules facilitate formation of cis-keto tautomers and are responsible for their different relaxation pathways in comparison with relaxation of excited enol-closed tauromers. Fluorescence decay on a nanosecond time scale was attributed to aggregated MS1 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...