Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neuron ; 111(16): 2544-2556.e9, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37591201

ABSTRACT

Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.


Subject(s)
Brain , Membrane Proteins , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Membrane Proteins/genetics , Biological Transport , Cell Membrane , Receptors, AMPA
2.
Metabolism ; 129: 155122, 2022 04.
Article in English | MEDLINE | ID: mdl-35026233

ABSTRACT

BACKGROUND AND AIMS: Olfactomedin 2 (OLFM2; also known as noelin 2) is a pleiotropic protein that plays a major role in olfaction and Olfm2 null mice exhibit reduced olfactory sensitivity, as well as abnormal motor coordination and anxiety-related behavior. Here, we investigated the possible metabolic role of OLFM2. METHODS: Olfm2 null mice were metabolically phenotyped. Virogenetic modulation of central OLFM2 was also performed. RESULTS: Our data showed that, the global lack of OLFM2 in mice promoted anorexia and increased energy expenditure due to elevated brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). This phenotype led to resistance to high fat diet (HFD)-induced obesity. Notably, virogenetic overexpression of Olfm2 in the lateral hypothalamic area (LHA) induced weight gain associated with decreased BAT thermogenesis. CONCLUSION: Overall, this evidence first identifies central OLFM2 as a new molecular actor in the regulation of whole-body energy homeostasis.


Subject(s)
Adipose Tissue, Brown , Thermogenesis , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Extracellular Matrix Proteins , Glycoproteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Thermogenesis/genetics
3.
J Neurochem ; 143(6): 635-644, 2017 12.
Article in English | MEDLINE | ID: mdl-28975619

ABSTRACT

The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.


Subject(s)
Extracellular Matrix Proteins/genetics , Glycoproteins/genetics , Protein Transport/genetics , Receptors, AMPA/metabolism , Animals , Brain/metabolism , Gene Knockout Techniques , Zebrafish
4.
Exp Neurol ; 261: 802-11, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218043

ABSTRACT

Olfactomedin 2 (Olfm2) is a secretory glycoprotein belonging to the family of olfactomedin domain-containing proteins. A previous study has shown that a mutation in OLFM2 is associated with primary open angle glaucoma in Japanese patients. In the present study, we generated Olfm2 deficient mice by replacing the Olfm2 gene with the LacZ gene. The loss of Olfm2 resulted in no gross abnormalities. However, Olfm2 null mice showed reduced exploration, locomotion, olfactory sensitivity, abnormal motor coordination, and anxiety related behavior. The pattern of the Olfm2 gene expression was studied in the brain and eye using ß-galactosidase staining. In the brain, Olfm2 was mainly expressed in the olfactory bulb, cortex, piriform cortex, olfactory trabeculae, and inferior and superior colliculus. In the eye expression was detected mainly in retinal ganglion cells. In Olfm2 null mice, the amplitude of the first negative wave in the visual evoked potential test was significantly reduced as compared with wild-type littermates. Olfm2, similar to Olfm1, interacted with the GluR2 subunit of the AMPAR complexes and Olfm2 co-segregated with the AMPA receptor subunit GluR2 and other synaptic proteins in the synaptosomal membrane fraction upon biochemical fractionation of the adult mice cortex and retina. Immunoprecipitation from the synaptosomal membrane fraction of the Olfm2 null mouse brain cortex using the GluR2 antibody showed reduced levels of several components of the AMPAR complex in the immunoprecipitates including Olfm1, PSD95 and CNIH2. These results suggest that heterodimers of Olfm1 and Olfm2 interact with AMPAR more efficiently than Olfm2 homodimers and that Olfm2 plays a role in the organization of the AMPA receptor complexes.


Subject(s)
Extracellular Matrix Proteins/deficiency , Glycoproteins/deficiency , Movement Disorders/genetics , Olfaction Disorders/genetics , Receptors, AMPA/metabolism , Sequence Deletion/genetics , Vision Disorders/genetics , Animals , Cerebral Cortex/metabolism , Disease Models, Animal , Evoked Potentials, Visual/genetics , Extracellular Matrix Proteins/genetics , Glycoproteins/genetics , Maze Learning/physiology , Mice , Mice, Knockout , Optic Nerve/pathology , Retina/metabolism , Vision Disorders/complications
5.
Exp Neurol ; 250: 205-18, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24095980

ABSTRACT

Olfactomedin 1 (Olfm1) is a secreted glycoprotein that is preferentially expressed in neuronal tissues. Here we show that deletion of exons 4 and 5 from the Olfm1 gene, which encodes a 52 amino acid long region in the N-terminal part of the protein, increased neonatal death and reduced body weight of surviving homozygous mice. Magnetic resonance imaging analyses revealed reduced brain volume and attenuated size of white matter tracts such as the anterior commissure, corpus callosum, and optic nerve. Adult Olfm1 mutant mice demonstrated abnormal behavior in several tests including reduced marble digging, elevated plus maze test, nesting activity and latency on balance beam tests as compared with their wild-type littermates. The olfactory system was both structurally and functionally disturbed by the mutation in the Olfm1 gene as shown by functional magnetic resonance imaging analysis and a smell test. Deficiencies of the olfactory system may contribute to the neonatal death and loss of body weight of Olfm1 mutant. Shotgun proteomics revealed 59 candidate proteins that co-precipitated with wild-type or mutant Olfm1 proteins in postnatal day 1 brain. Olfm1-binding targets included GluR2, Cav2.1, teneurin-4 and Kidins220. Modified interaction of Olfm1 with binding targets led to an increase in intracellular Ca(2+) concentration and activation of ERK1/2, MEK1 and CaMKII in the hippocampus and olfactory bulb of Olfm1 mutant mice compared with their wild-type littermates. Excessive activation of the CaMKII and Ras-ERK pathways in the Olfm1 mutant olfactory bulb and hippocampus by elevated intracellular calcium may contribute to the abnormal behavior and olfactory activity of Olfm1 mutant mice.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Brain/pathology , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Exons/genetics , Extracellular Matrix Proteins/genetics , Female , Glycoproteins/genetics , Immunoprecipitation , Magnetic Resonance Imaging , Male , Mice , Mice, Mutant Strains , Molecular Sequence Data , Proteomics/methods , Reverse Transcriptase Polymerase Chain Reaction , Sequence Deletion
6.
J Biol Chem ; 287(44): 37171-84, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22923615

ABSTRACT

Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.


Subject(s)
Axons/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Extracellular Matrix Proteins/physiology , Glycoproteins/physiology , Nerve Tissue Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Green Fluorescent Proteins/biosynthesis , Growth Cones/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteins/physiology , Nogo Proteins , Optic Nerve/cytology , Optic Nerve/embryology , Organ Specificity , PC12 Cells , Protein Binding , Rats , Receptor, Nerve Growth Factor/metabolism , Zebrafish , rhoA GTP-Binding Protein/metabolism
7.
Invest Ophthalmol Vis Sci ; 52(5): 2584-92, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21228389

ABSTRACT

PURPOSE: Olfactomedin 2 (OLFM2) belongs to the family of olfactomedin domain-containing proteins. Genetic data suggest its association with glaucoma in Japanese patients. However, its functions are still elusive. In this study, the properties of mammalian OLFM2 were investigated. METHODS: Expression of the rat and mouse Olfm2 gene was studied by using real-time PCR and in situ hybridization. Substitutions were introduced into OLFM2 by mutagenesis in vitro. Intracellular localization of OLFM2 was studied by confocal microscopy after transient transfection in HEK293 cells. Interaction of OLFM2 with olfactomedin 1 (Olfm1), olfactomedin 3 (Olfm3), myocilin, and gliomedin was studied by using co-immunoprecipitation. RESULTS: Two major human OLFM2 mRNAs encode secreted proteins with a length of 454 and 478 amino acids. OLFM2 is more closely related to OLFM1 and -3 than to any other family members. Olfm2 showed the most dynamic expression pattern compared with Olfm1 and -3 during mouse eye development and was expressed preferentially in the developing retinal ganglion cell layer. Among three OLFM2 substitutions tested (T86M, R144Q, and L420S), only L420S completely blocked secretion of the protein. OLFM2 interacted with Olfm1 and -3, but not with myocilin and gliomedin. Co-transfection of the L420S mutant with wild-type Olfm1 and -3 significantly inhibited secretion of Olfm1 and -3. CONCLUSIONS: Highly conserved OLFM2 protein may play an important role in the course of retinal and eye development. Severe mutations in one of the closely related olfactomedin domain-containing proteins (Olfm1-3) may block the secretion and probably the activity of all three family members, leading to more pronounced diseases of the retina than the knockout of individual genes.


Subject(s)
Extracellular Matrix Proteins/genetics , Eye/embryology , Gene Expression Regulation, Developmental/physiology , Glycoproteins/genetics , Protein Interaction Domains and Motifs/genetics , Retinal Ganglion Cells/metabolism , Amino Acid Sequence , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cytoskeletal Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Eye/growth & development , Eye Proteins/metabolism , Fluorescent Antibody Technique, Indirect , Glycoproteins/metabolism , HEK293 Cells/metabolism , Humans , Immunoprecipitation , In Situ Hybridization , Mice , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Interaction Mapping , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transfection
8.
Mol Vis ; 15: 319-25, 2009.
Article in English | MEDLINE | ID: mdl-19204788

ABSTRACT

PURPOSE: To determine the immunophenotypes of macular corneal dystrophy (MCD) in Indian patients and to correlate them with mutations in the carbohydrate 6-sulfotransferase (CHST6) gene. METHODS: Sixty-four patients from 53 families with MCD that were previously screened for mutations in CHST6 were included in an immunophenotype analysis. Antigenic keratan sulfate (AgKS) in serum as well as corneal tissue was evaluated in 31 families. Only cornea was evaluated in 11 families, and only serum was evaluated in 11 families. AgKS was detected in formalin-fixed, paraffin-embedded corneal sections by immunohistochemistry and in serum by ELISA using a monoclonal antibody against sulfated forms of KS in patients with MCD as well as normal controls. RESULTS: Analysis of corneal and/or serum AgKS disclosed MCD type I (27 families), MCD type IA (5 families), and MCD type II (3 families) in the cases studied. An additional 10 families were either MCD type I or MCD type IA since only serum AgKS data were available. Seven families manifested atypical immunophenotypes since the corneal AgKS expression was either of MCD type I or MCD type IA, but serum AgKS levels ranged from 19 ng/ml to 388 ng/ml. More than one immunophenotype was detected amongst siblings in two families. Each immunophenotype was associated with mutational heterogeneity in CHST6. CONCLUSIONS: MCD type I was the predominant immunophenotype in the Indian population studied followed by MCD type IA and then MCD type II. We detected further immunophenotypic heterogeneity by finding atypical patterns of AgKS reactivity in a subset of families. There were no simple correlations between immunophenotypes and specific mutations in CHST6, suggesting that factors other than CHST6 mutations may be contributing to the immunophenotypes in MCD.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Keratan Sulfate/immunology , Mutation , Sulfotransferases/genetics , Cornea/immunology , Cornea/pathology , Corneal Dystrophies, Hereditary/immunology , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/pathology , Family , Humans , Immunohistochemistry , India , Keratan Sulfate/analysis , Keratan Sulfate/blood , Phenotype , Statistics as Topic , Sulfotransferases/metabolism , Carbohydrate Sulfotransferases
9.
Mol Vis ; 13: 1327-32, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17679935

ABSTRACT

PURPOSE: Autosomal recessive congenital hereditary endothelial dystrophy (AR-CHED or CHED2) is a bilateral corneal disorder manifesting at birth or in early childhood. CHED2 is caused by mutations in the sodium bicarbonate transporter-like solute carrier family 4 member 11 (SLC4A11) gene on chromosome 20p13. We screened 42 unrelated families with CHED2 in order to establish the spectrum of mutations in SLC4A11 and to look for genotype-phenotype correlations. METHODS: Forty-two families (49 affected and 73 unaffected members) with recessive CHED were recruited according to predefined diagnostic criteria. Clinical data including age at onset and presentation, pre- and post-operative visual acuities, and presence of nystagmus were taken from patient records. Histopathologic parameters such as corneal thickness, Descemet membrane thickness, and endothelial cell counts were assessed on corneal sections. DNA from patients was screened for sequence changes by polymerase chain reaction (PCR)-amplification of coding regions of SLC4A11 and single strand conformation polymorphism analysis followed by sequencing. Sequence changes found were tested in 50 unrelated normal controls. RESULTS: Twenty-seven different mutations were identified in 35 unrelated families, 19 of which were not previously reported. The mutations identified consisted of 13 missense, 5 nonsense, 7 deletions, 1 complex (deletion plus insertion) mutation, and 1 splice site mutation. Both mutant alleles were identified in 33 families and only one mutant allele in two families. No correlations were evident between clinical or histopathologic parameters and SLC4A11 mutations. CONCLUSIONS: These data add to the mutational repertoire of SLC4A11 and establish the high degree of mutational heterogeneity in autosomal recessive CHED.


Subject(s)
Anion Transport Proteins/genetics , Antiporters/genetics , Corneal Dystrophies, Hereditary/genetics , Genes, Recessive , Mutation/genetics , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Phenotype
10.
J Med Genet ; 44(1): 64-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16825429

ABSTRACT

OBJECTIVE: To map and identify the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2, OMIM 217700), a disorder characterised by diffuse bilateral corneal clouding that may lead to visual impairment and requiring corneal transplantation. METHODS: Members of 16 families with autosomal recessive CHED were genotyped for 13 microsatellite markers at the CHED2 locus on chromosome 20p13-12. Two-point linkage analysis was carried out using the FASTLINK version of the MLINK program. Mutation screening was carried out by amplification of exons and flanking regions by polymerase chain reaction, followed by direct automated sequencing. RESULTS: Linkage and haplotype analysis placed the disease locus within a 2.2 cM (1.3 Mb) interval flanked by D20S198 and D20S889, including SLC4A11. The maximum LOD score of 11.1 was obtained with D20S117 at theta = 0. Sequencing of SLC4A11 showed homozygotic mutations in affected members from 12 of 16 families. CONCLUSION: These results confirm that mutations in the SLC4A11 gene cause autosomal recessive CHED.


Subject(s)
Anion Transport Proteins/genetics , Antiporters/genetics , Corneal Dystrophies, Hereditary/genetics , Genes, Recessive , Child , Child, Preschool , Chromosomes, Human, Pair 20/genetics , Consanguinity , Exons , Female , Humans , Infant , Lod Score , Male , Microsatellite Repeats , Mutation , Pedigree
11.
Mol Vis ; 9: 730-4, 2003 Dec 22.
Article in English | MEDLINE | ID: mdl-14735064

ABSTRACT

PURPOSE: Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. METHODS: Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. RESULTS: We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. CONCLUSIONS: These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Mutation , Sulfotransferases/genetics , Adolescent , Adult , Alleles , Corneal Dystrophies, Hereditary/enzymology , Corneal Dystrophies, Hereditary/epidemiology , DNA Mutational Analysis , Genetic Heterogeneity , Humans , India/epidemiology , Middle Aged , Polymerase Chain Reaction , Sequence Analysis, DNA , Carbohydrate Sulfotransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...