Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38066330

ABSTRACT

BACKGROUND: Gasoline-powered vehicles and equipment are an important source of air pollution in California. Many gasoline-related pollutants pose significant health concerns. The California Air Resources Board strictly regulates the state's gasoline formulation and vehicle emissions. OBJECTIVE: To investigate exposure trends for gasoline-related air pollutants between 1996 and 2014, capturing the period before and after the removal of methyl t-butyl ether (MTBE). METHODS: We identified gasoline-related chemicals with known or suspected health concerns and adequate ambient air monitoring data. Average exposures to the general public were estimated from 1996 to 2014 in five major air basins and statewide. We determined the fractions of exposures attributable to gasoline use and evaluated cancer and non-cancer risks for chemicals with available cancer potencies and health reference values. RESULTS: We found that average gasoline-attributable cancer risks for the general California population from the most highly emitted carcinogens (acetaldehyde, benzene, 1,3-butadiene, and formaldehyde) declined by over 80% between 1996 and 2014. This decline occurred despite roughly constant statewide gasoline sales, an increase in vehicle miles traveled, and an approximately 10% increase in vehicle registrations over this same period. Naphthalene, measured as a volatile organic compound (VOC), was the most abundant gasoline-related polycyclic aromatic hydrocarbon (PAH). From 1996 to 2014, gasoline-attributable cancer risks for naphthalene were estimated to drop approximately threefold in the South Coast Air Basin. Exposures to gasoline-related chemicals associated with non-cancer health effects, such as chronic respiratory toxicity or neurotoxicity, were generally below levels of concern. The exception was acrolein, with gasoline-related exposures in 2014 estimated to be high enough to pose risks for respiratory toxicity. IMPACT STATEMENT: Our historical analysis demonstrated the success of California's regulatory efforts to reduce gasoline-related air pollutant exposures and risks to the general public. New efforts are focused on addressing gasoline-related and other air pollution in heavily impacted communities affected by multiple environmental and social stressors.

2.
Article in English | MEDLINE | ID: mdl-38102301

ABSTRACT

BACKGROUND: Diesel exhaust (DE) exposures pose concerns for serious health effects, including asthma and lung cancer, in California communities burdened by multiple stressors. OBJECTIVE: To evaluate DE exposures in disproportionately impacted communities using biomonitoring and compare results for adults and children within and between families. METHODS: We recruited 40 families in the San Francisco East Bay area. Two metabolites of 1-nitropyrene (1-NP), a marker for DE exposures, were measured in urine samples from parent-child pairs. For 25 families, we collected single-day spot urine samples during two sampling rounds separated by an average of four months. For the 15 other families, we collected daily spot urine samples over four consecutive days during the two sampling rounds. We also measured 1-NP in household dust and indoor air. Associations between urinary metabolite levels and participant demographics, season, and 1-NP levels in dust and air were evaluated. RESULTS: At least one 1-NP metabolite was present in 96.6% of the urine samples. Detection frequencies for 1-NP in dust and indoor air were 97% and 74%, respectively. Results from random effect models indicated that levels of the 1-NP metabolite 6-hydroxy-1-nitropyrene (6-OHNP) were significantly higher in parents compared with their children (p-value = 0.005). Urinary 1-NP metabolite levels were generally higher during the fall and winter months. Within-subject variability was higher than between-subject variability (~60% of total variance versus ~40%, respectively), indicating high short-term temporal variability. IMPACT: Biomonitoring, coupled with air monitoring, improves understanding of hyperlocal air pollution impacts. Results from these studies will inform the design of effective exposure mitigation strategies in disproportionately affected communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...