Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38308689

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC. XTT assay results showed that DA exhibited strong cytotoxicity on HepG2 cells with an IC50 value of 78.07 µg/mL at 48 h. Flow cytometric analysis results revealed that DA displayed late apoptotic and necrotic effects on HepG2 cells. Consistent with these findings, real-time PCR results showed that DA did not alter the BAX/BCL2 ratio in HepG2 cells but upregulated the P53 gene. Moreover, the wound healing assay results revealed a strong anti-migratory effect of DA in HepG2 cells. Real-time PCR and Western blot analyses demonstrated that DA increased TRXR1 gene and protein expression levels, whereas enzyme activity studies disclosed that DA inhibited TRXR1. These findings suggest that DA has an anticancer effect on HepG2 cells by targeting the enzymatic inhibition of TRXR1. In conclusion, DA as a TRXR1 inhibitor can be considered an effective chemotherapeutic agent which may be a useful lead compound for the treatment of HCC.

2.
J Appl Toxicol ; 43(11): 1676-1685, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37329199

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths all over the world. Therefore, it has gained importance in the development of new chemotherapeutic strategies to identify anticancer agents with low side effects, reliable, high anticancer potential, and specific to lung cancer cells. Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for lung cancer treatment because of its overexpression in tumor cells. Here, we aimed to examine the anticancer effect of diffractaic acid, a lichen secondary metabolite, in A549 cells by comparing it with the commercial chemotherapeutic drug carboplatin and also to investigate whether the anticancer effect of diffractaic acid occurs via TrxR1-targeting. The IC50 value of diffractaic acid on A549 cells was determined as 46.37 µg/mL at 48 h, and diffractaic acid had stronger cytotoxicity than carboplatin in A549 cells. qPCR results revealed that diffractaic acid promoted the intrinsic apoptotic pathway through the upregulation of the BAX/BCL2 ratio and P53 gene in A549 cells, which is consistent with the flow cytometry results. Furthermore, migration analysis results indicated that diffractaic acid impressively suppressed the migration of A549 cells. While the enzymatic activity of TrxR1 was inhibited by diffractaic acid in A549 cells, no changes were seen in the quantitative expression levels of gene and protein. These findings provide fundamental data on the anticancer effect of diffractaic acid on A549 cells targeting TrxR1 activity, suggesting that it could be considered a chemotherapeutic agent for lung cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...