Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837106

ABSTRACT

Silicon carbonitride films were deposited on Si (100), Ge (111), and fused silica substrates through the reactive magnetron sputtering of a SiC target in an argon-nitrogen mixture. The deposition was carried out at room temperature and 300 °C and at an RF target power of 50-150 W. An increase in the nitrogen flow rate leads to the formation of bonds between silicon and carbon atoms and nitrogen atoms and to the formation of SiCxNy layers. The as-deposited films were analyzed with respect to their element composition, state of chemical bonding, mechanical and optical properties, and wetting behavior. It was found that all synthesized films were amorphous and represented a mixture of SiCxNy with free carbon. The films' surfaces were smooth and uniform, with a roughness of about 0.2 nm. Depending on the deposition conditions, SiCxNy films within the composition range 24.1 < Si < 44.0 at.%, 22.4 < C < 56.1 at.%, and 1.6 < N < 51.9 at.% were prepared. The contact angle values vary from 37° to 67°, the hardness values range from 16.2 to 34.4 GPa, and the optical band gap energy changes from 1.81 to 2.53 eV depending on the synthesis conditions of the SiCxNy layers. Particular attention was paid to the study of the stability of the elemental composition of the samples over time, which showed the invariance of the composition of the SiCxNy films for five months.

2.
Dalton Trans ; 51(2): 705-714, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34913941

ABSTRACT

Screening of AgNO3/AgStBu solutions in DMF, DMSO and NMP resulted in the isolation of three novel nanosized silver/thiolate complexes with a torus-like {Ag20(StBu)10} core. The structures of [NO3@Ag20(StBu)10(NO3)9(DMF)6] (1) and [NO3@Ag20(tBuS)10(NO3)8(NMP)8][NO3@Ag19(tBuS)10(NO3)8(NMP)6]2(NO3) (2) were studied by single crystal X-ray diffraction (SCXRD). The self-assembly process leading to 1 can be switched to a different outcome using Br-, resulting in [Br@Ag16(StBu)8(NO3)5(DMF)3](NO3)2 (3), which is the one of the few genuine host-guest complexes in the silver/thiolate systems. Solutions of the individual complexes in CH3CN were studied by HR-ESI-MS techniques, which revealed a dynamic behavior for each complex, driven by a redistribution of the {AgNO3} units. This dynamics results in the appearance of both cationic and anionic species, based on unchanged silver-thiolate cores. Daylight causes degradation of 3 with the formation of a composite material based on defective orthorhombic Ag2S with a porous morphology, as observed using the SEM technique. The electrocatalytic HER activity of such a material was studied.

3.
Soft Matter ; 14(10): 1811-1821, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29442108

ABSTRACT

The evaporation dynamics of a water droplet with an initial volume of 2 µl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 µm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

4.
Anal Bioanal Chem ; 395(6): 1901-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19714320

ABSTRACT

Films of BC(x)N(y) were produced in a plasma-enhanced chemical vapor deposition process using trimethylborazine as precursor and with H2, He, N2, and NH3, respectively, as auxiliary gas. These films deposited on Si(100) wafers or fused quartz glass substrates were characterized chemically by X-ray photoelectron spectroscopy and by synchrotron radiation-based total-reflection X-ray fluorescence combined with near-edge X-ray absorption fine structure. Independent of the auxiliary gas, the B-N bonds are dominating. Furthermore, B-C and N-C bonds were identified. Oxygen, present in the bulk (in contrast to the surface layer of some nanometers, where molecular oxygen and/or water are absorbed) as an impurity, is bonded to boron or to carbon, respectively. The relation of boron and nitrogen changes with the character of the auxiliary gas: cB/cN approximately = 4:3 (for H2 and He) and cB/cN approximately = 1 (for N2 or NH3). Furthermore, physical properties such as the refractive index and the optical band-gap energy were determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...