Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 37(7): 1081-5, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16015122

ABSTRACT

PURPOSE: To compare serum electrolyte concentrations of cramping and control Ironman triathletes. METHODS: Triathletes suffering from acute exercise-associated muscle cramping (EAMC) after the 2000 South African Ironman Triathlon formed the cramping group (CR, N = 11). Non-cramping triathletes matched for race finishing time and body mass formed the control group (CON, N = 9). All subjects were weighed at race start and immediately post-race. Blood samples were drawn from both groups during recovery for the analysis of serum magnesium, glucose, sodium, potassium and chloride concentrations. Hemoglobin concentration and hematocrit were also measured. Surface electromyography (EMG) (mV) was recorded from a non-cramping control muscle (triceps) and the most severely cramping lower limb muscle of the CR group. EMG was recorded at the beginning of every minute for a 10-min period during recovery. RESULTS: There were no significant differences between the groups for body mass or percent body mass loss during the race. Post-race sodium concentration was significantly lower (P = 0.01) in the CR group than the CON group (140 +/- 2 vs 143 +/- 3 mmol.L) but was within the normal clinical range of post-race serum sodium concentrations. There were no significant differences between the two groups for post-race serum electrolytes, glucose, hemoglobin concentrations or hematocrit. Surface EMG (mV) was significantly higher (P < 0.05) in the cramping muscles than the control muscle of the CR group at 0, 3, 4, and 5 min of the 10-min recording period. CONCLUSION: Acute EAMC in ironman triathletes is not associated with a greater percent body mass loss or clinically significant differences in serum electrolyte concentrations. The increased EMG activity of cramping muscles may reflect increased neuromuscular activity.


Subject(s)
Electrolytes/blood , Muscle Cramp/physiopathology , Physical Exertion/physiology , Sports , Adult , Case-Control Studies , Electromyography , Humans , Muscle Cramp/blood , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL