Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(13): 4186-4199, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36892234

ABSTRACT

Arguably one of the largest research areas involving carbon dioxide (CO2) fixation is the coupling of CO2 to epoxides to form cyclic carbonates and polycarbonates. In this sense, there is an ever-increasing demand for the development of higher-performing catalytic systems that could counterbalance sustainability and energy efficiency in the production of cyclic carbonates. The use of abundant first-row transition metals combined with naturally occurring amino acids may be an ideal catalytic platform to fulfill this demand. Nevertheless, detailed information on the interactions between metal centers and natural products as catalysts in this transformation is lacking. Here a series of Co(III) amino acid catalysts operating in a binary system showed outstanding performance for the coupling reaction of epoxides and CO2. Nine new complexes of the type trans(N)-[Co(aa)2(bipy)]Cl (aa: ala, asp, lys, met, phe, pro, ser, tyr, and val) were used to explore the structure-activity relationship influenced by the complex outer coordination sphere, and its effect on the catalytic activity in the coupling reaction of CO2 and epoxides.

2.
ACS Pharmacol Transl Sci ; 5(10): 907-918, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268119

ABSTRACT

Binuclear molybdenum sulfur complexes are effective for the catalytic conversion of cyanide into thiocyanate. The complexes themselves exhibit low toxicity and high aqueous solubility, which render them suitable as antidotes for cyanide poisoning. The binuclear molybdenum sulfur complex [(thr)Mo2O2(µ-S)2(S2)]- (thr - threonine) was subjected to biological studies to evaluate its cellular accumulation and mechanism of action. The cellular uptake and intracellular distribution in human alveolar (A549) cells, quantified by inductively coupled plasma mass spectrometry (ICP-MS) and cell fractionation methods, revealed the presence of the compound in cytosol, nucleus, and mitochondria. The complex exhibited limited binding to DNA, and using the expression of specific protein markers for cell fate indicated no effect on the expression of stress-sensitive channel components involved in cell volume regulation, weak inhibition of cell proliferation, no increase in apoptosis, and even a reduction in autophagy. The complex is anionic, and the sodium complex had higher solubility compared to the potassium. As the molybdenum complex possibly enters the mitochondria, it is considered as a promising remedy to limit mitochondrial cyanide poisoning following, e.g., smoke inhalation injuries.

3.
Molecules ; 26(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500604

ABSTRACT

The aqueous synthesis of Pd(II) complexes with alkylated tripeptides led to the hydrolysis of the peptides at low pH values and mixtures of complexed peptides were formed. A non-aqueous synthetic route allowed the formation and isolation of single products and their characterization. Pd(II) complexes with α-Asp(OR)AlaGly(OR), ß-Asp(OR)AlaGly(OR), and TrpAlaGly(OR) (R = H or alkyl) as tri and tetradentate chelates were characterized. The tridentate coordination mode was accompanied by a fourth monodentate ligand that was shown to participate in both ligand exchange reactions and a direct removal to form the tetradentate coordination mode. The tetradentate coordination revealed a rare a hemi labile carbonyl goup coordination mode to Pd(II). Reactivity with small molecules such as ethylene, acids, formate, and episulfide was investigated. Under acidic conditions and in the presence of ethylene; acetaldehyde was formed. The Pd(II) is a soft Lewis acid and thiophilic and the complexes abstract sulfur from episulfide at apparent modest catalytic rates. The complexes adopt a square planar geometry according to a spectroscopic analysis and DFT calculations that were employed to evaluate the most energetically favorable coordination geometry and compared with the observed infrared and NMR data.


Subject(s)
Palladium/chemistry , Peptides/chemistry , Chelating Agents/chemistry , Coordination Complexes/chemistry , Density Functional Theory , Ligands , Magnetic Resonance Spectroscopy/methods
4.
RSC Adv ; 11(27): 16326-16338, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479168

ABSTRACT

Catalysts based on cobalt amino acids and 2,2 bipyridine (bipy) present an attractive and cost-effective alternative as ring opening polymerization catalysts, yet this system remains underexplored despite the advantageous coordination properties of amino acids and bipy as ligands combined with the variety of accessible oxidation states and coordination geometries of cobalt. Here, metal complexes of type [Co(aa)2(bipy)] with amino acids (aa: glycine, leucine and threonine) as ligands are reported. The complexes were characterized spectroscopically (IR, UV-vis and 1H, 13C NMR for diamagnetic species), and by MS spectrometry and elemental analysis. The data reveal that the 2,2 bipyridine acts as a neutral bidentate donor coordinating to the metal ion through two nitrogen atoms and the amino acid acts as a bidentate ligand coordinating through the carboxylate and amino group forming a stable five membered ring and a pseudo-octahedral geometry around the Co center. The activity of the complexes for the ring opening polymerization (ROP) of rac-lactide is presented. The complexes are effective initiators for the ROP of rac-lactide (K obs = 9.05 × 10-4 s-1) at 100 : 1 [rac-lactide] : [catalyst] 1 M overall concentration of lactide in toluene at 403 K.

5.
Inorg Chem ; 59(24): 18190-18204, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33249838

ABSTRACT

Water-soluble complexes are desirable for the aqueous detoxification of cyanide. Molybdenum complexes with α-amino acid and disulfide ligands with the formula K[(L)Mo2O2(µ-S)2(S2)] (L = leu (1), met (2), thr (3), and ser (4)) were synthesized in a reaction of [(DMF)3MoO(µ-S)2(S2)] with deprotonated α-amino acids; leu, met, thr, and ser are the carboxylate anions of l-leucine, l-methionine, l-threonine, and l-serine, respectively. Potassium salts of α-amino acids (leu (1a), met (2a), thr (3a), and ser (4a)) were prepared as precursors for complexes 1-4, respectively, by employing a nonaqueous synthesis route. The ligand exchange reaction of [Mo2O2(µ-S)2(DMF)6](I)2 with deprotonated α-amino acids afforded bis-α-amino acid complexes, [(L)2Mo2O2(µ-S)2] (6-8). A tris-α-amino acid complex, [(leu)2Mo2O2(µ-S)2(µ-leu + H)] (5; leu + H is the carboxylate anion of l-leucine with the amine protonated), formed in the reaction with leucine. 5 crystallized from methanol with a third weakly bonded leucine as a bridging bidentate carboxylate. An adduct of 8 with SCN- coordinated, 9, crystallized and was structurally characterized. Complexes 1-4 are air stable and highly water-soluble chiral molecules. Cytotoxicity studies in the A549 cell line gave IC50 values that range from 80 to 400 µM. Cyclic voltammetry traces of 1-8 show solvent-dependent irreversible electrochemical behavior. Complexes 1-4 demonstrated the ability to catalyze the reaction of thiosulfate and cyanide in vitro to exhaustively transform cyanide to thiocyanate in less than 1 h.


Subject(s)
Amino Acids/pharmacology , Antidotes/chemical synthesis , Antidotes/pharmacology , Cyanides/chemistry , Molybdenum/pharmacology , A549 Cells , Amino Acids/chemistry , Antidotes/chemistry , Cell Survival/drug effects , Cyanides/poisoning , Humans , Inhibitory Concentration 50 , Leucine/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methionine/chemistry , Models, Molecular , Molecular Structure , Molybdenum/chemistry , Serine/chemistry , Solubility , Spectrophotometry, Infrared , Thiocyanates/chemistry , Threonine/chemistry , Water
6.
J Biol Inorg Chem ; 25(5): 811-825, 2020 08.
Article in English | MEDLINE | ID: mdl-32676770

ABSTRACT

Alkylation of the C-terminus acids in small peptides allows direction to amine and amide coordination, while changing the peptide composition to form tetradentate κ4[n,5,5], where n = 5-, 6-, 7-, or 8-membered ring coordination geometries, can be achieved. The alkylated tripeptide ligands, TrpAlaGly(OMe), ß-Asp(OtBu)AlaGly(OMe), Asp(OtBu)AlaGly(OMe), and the fully methylated GSH, γ-Glu(OMe)Cys(SMe)Gly(OMe), were synthesized and their coordination properties to [Pd(en)(H2O)2]2+ were studied. pH-dependent coordination was analyzed by NMR spectroscopy and the coordination to the alkylated tripeptides at selected pH values inferred from their NMR spectra. If selective coordination of amine/amide donors results in metal complexation, allowing for flexible and adjustable ligand frameworks, then this strategy could potentially be extended to other metal ions and peptide system.


Subject(s)
Coordination Complexes/chemistry , Oligopeptides/chemistry , Palladium/chemistry , Coordination Complexes/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Structure
7.
Inorg Chem ; 59(11): 7644-7656, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32401019

ABSTRACT

Removal of cyanide as nontoxic thiocyanate under physiological conditions may serve as a catalytic detoxification route in vivo. Aqueous catalytic reaction conditions were explored where at the conditions employed the reaction proceeded to exhaustion in 1 h. The complex, syn-[Mo2O2(µ-S)2(S2)(DMF)3] 1, participates in a ligand exchange reaction of the dimethylformamide ligands and cyanide. Simultaneous sulfur abstraction reaction from the terminal disulfide group forms thiocyanate and terminal sulfido ligand. Respective reaction rates for the two reactions appear competitive where different products were isolated solely based on change of reaction temperature. The approach to determine the number of cyanide ligands participating in the ligand exchange reaction by varying the stoichiometry and reaction temperature led to identification and isolation of tetranuclear complexes 2 and 5 and dinuclear complexes 3, 4, and 6. A synthesized and fully characterized thiocyanate analog of 6 (7) supports spectroscopic characterization of 6. The tetranuclear anion, [Mo4O4(µ-S)6(CN)4]4-, 2, was crystallized from a reaction at ambient temperature. The dinuclear anion, [Mo2O2(µ-S)2(S)(CN)3]3-, 3, was crystallized from similar reaction conditions at lower temperature. The reaction yield of thiocyanate obtained at pH of 7.4 and at 9.2 as a function of time, for several ratios of cyanide, favors the sulfur abstraction reaction at elevated pH. The sulfur abstraction reaction is the first step in a proposed mechanism of the reaction of cyanide and thiosulfate to form thiocyanate and sulfite by 1.

8.
Met Ions Life Sci ; 192019 Jan 14.
Article in English | MEDLINE | ID: mdl-30855115

ABSTRACT

Physiological metabolism of cyanide takes place by a single major pathway that forms non-toxic thiocyanate that is subsequently excreted. Rhodanese is the primary enzyme to execute metabolism of cyanide with minor pathways from other sulfurtransferases in vivo. The rhodanese enzyme depends on sulfur donor availability to metabolize cyanide and poisoning occurs at elevated cyanide concentrations in vivo. Cyanide interacts with over 40 metalloenzymes, but its lethal action is non-competitive inhibition of cytochrome c oxidase, halting cellular respiration and causing hypoxic anoxia. Only a handful of antidotes for treatment of cyanide poisoning are known; they are primarily inorganic compounds and metal complexes which are intended to intercept cyanide before it inhibits cellular respiration. The inorganic compounds manipulate hemoglobin, forming methemoglobin, or supply sulfur for the rhodanese enzyme. The metal complexes intercept the cyanide and bind it before reaching its target. Cobalt complexes of corrins and vitamin B12 derivatives are the state-of-the-art agents, while the longest employed complex, Co2EDTA, is designed to deliver "free" cobalt for binding of cyanide. Compounds that are in development are discussed from the point of how they are designed to intercept cyanide. The challenge of reversing the cyanide inhibition of cytochrome c oxidase is based on the catalytic active site structure and reactivity. General information about history and occurrence of poisoning and clinical symptoms is discussed and the challenges related to analytical methods available to analyze blood cyanide levels and to confirm the presence of cyanide poisoning.


Subject(s)
Antidotes/pharmacology , Cyanides/poisoning , Metals/pharmacology , Antidotes/chemistry , Electron Transport Complex IV/antagonists & inhibitors , Humans
9.
J Inorg Biochem ; 160: 166-71, 2016 07.
Article in English | MEDLINE | ID: mdl-26920227

ABSTRACT

Selected molybdenum sulfur compounds with the formulas (M)[Mo2O2S4L] where (Et4N)2(1), L=S4(2-), (Et4N)(2), L=Cp, (3), L=DMF, K(5), L=serine, M=Et4N(+), K(+), Na(+) and [Mo2O2S2L2] where Na2(4), L=cysteine, and (6), L=threonine, were prepared and subjected to cytotoxicity studies in vitro. The results were analyzed to rank the compounds according to their relative cytotoxicity and to correlate the observed toxicity to specific composition. The results guide future efforts to synthesize highly water soluble, non-toxic, compounds. Strong correlation was observed between toxicity and cation selection, as well as selection of biocompatible ligands combined with alkali metal salts. The most toxic compound analyzed showed about 50 times less cytotoxicity than the cisplatin reference compound in HT-29 cells. Preliminary results from in vivo data agree with the ranking obtained in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Molybdenum/chemistry , Organometallic Compounds/pharmacology , Sulfur/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Coordination Complexes/chemical synthesis , Cysteine/chemistry , HT29 Cells , Humans , Inhibitory Concentration 50 , Ligands , MCF-7 Cells , Metals, Alkali/chemistry , Organometallic Compounds/chemical synthesis , Serine/chemistry , Solubility , Structure-Activity Relationship , Threonine/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...