Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Bioprospect ; 14(1): 40, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955942

ABSTRACT

Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.

2.
ACS Infect Dis ; 8(11): 2253-2258, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36268971

ABSTRACT

Metabolic profiling of the extracts from a library of actinobacteria led to the identification of a novel polyketide, demurilactone A, produced by Streptomyces strain DEM21308. The structure of the compound was assigned based on a detailed investigation of 1D/2D NMR spectra and HR-MS. Whole genome DNA sequencing, followed by bioinformatics analysis and insertional mutagenesis, identified type I polyketide synthases encoded by the dml gene cluster to direct the biosynthesis of this polyene macrolide. While the number of modules is consistent with the carbon backbone of the assigned structure, some discrepancies were identified in the domain organization of five modules. Close investigation of the amino acid sequences identified several mutations in the conserved motifs of nonfunctional domains. Furthermore, the absolute configuration of hydroxy-bearing stereocenters was proposed based on analyses of the ketoreductase domains. Remarkably, although demurilactone A has little detectable activity against normal-walled bacteria, it specifically inhibits the growth of cell wall-deficient "L-form" Bacillus subtilis at a minimum inhibitory concentration value of 16 µg/mL. Time-lapse microscopy analyses revealed that demurilactone affects membrane dynamics, probably by reducing membrane fluidity. This compound could be a powerful reagent for studying long-standing questions about the involvement of L-forms in recurrent infection.


Subject(s)
Bacillus subtilis , Streptomyces , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Growth Inhibitors/metabolism , Polyketide Synthases/genetics , Streptomyces/genetics , Streptomyces/chemistry , Macrolides
SELECTION OF CITATIONS
SEARCH DETAIL
...