Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Biol ; 84: e280008, 2024.
Article in English | MEDLINE | ID: mdl-38422300

ABSTRACT

Mining environmental liabilities generate environmental pollution. The objective of the present study was to determine the yield of white clover (Trifolium repens) and orchard grass (Dactylis glomerata) cultivated in mining environmental passives adding black earth and compost as a substrate in the Buenaventura Julcani Huancavelica Company. The treatments were the combinations: 4: 3.1: 3.1: 3:1.1 kg of RP: RP, TN: RP, C: RP, TN, C respectively. They were distributed in four treatments with twelve experimental units for each species of leguminous and gramineous grass, we worked according to the completely randomized design (DCA) with a 2 x 4 factorial arrangement, the experimental unit being a treatment with twelve repetitions. The variables evaluated were: germination percentage (TG) and stem survival percentage (TST). For the statistical analysis, the SPSS software was used.


Subject(s)
Composting , Trifolium , Dactylis , Medicago , Random Allocation
2.
Braz J Biol ; 83: e274345, 2023.
Article in English | MEDLINE | ID: mdl-38126631

ABSTRACT

The purpose of the present investigation was to determine the effect of rhizobium and gibberellin on the production of hydroponic green forage from red clover (Trifolium pratense L.) variety quiñequeli, four variables were measured: plant height, biomass weight, grass weight and root weight. The treatments were T0: 0%, T1: 10%, T2: 20%, T3: 30% and T4: 40% of Rhizobium before germination and Gibberellin T0: 0g, T1: 2.4g; T2: 3.3g; T3: 4.3 and T4: 5.3g each treatment with 6 repetitions, three applications on days 5, 10, 15 and 20 of growth. Data were analyzed with DCA, ANOVA and DUNCAN's multiple comparisons test; the results obtained were: first measurement with rhizobium without gibberellin there were no statistical differences, second and third measurement with Gibberellin application did not present statistical differences and the fourth measurement presented statistical difference (α=0.05), average height of the plant with a mean of 12.82 cm, T4 was higher, in biomass a statistical difference was obtained with a mean of 3.056 kg, T3 was higher, weight of grass and root did not present statistical differences; concluding that the use of rhizobium and gibberellin could be a usable alternative in the production of hydroponic green fodder, to alleviate the problems of fodder scarcity in dry season, its use being recommended in high Andean livestock.


Subject(s)
Rhizobium , Trifolium , Gibberellins/pharmacology , Hydroponics , Animal Feed , Poaceae
3.
Braz J Biol ; 83: e273843, 2023.
Article in English | MEDLINE | ID: mdl-37466515

ABSTRACT

Instead of typical household trash, the heavy metal complexes, organic chemicals, and other poisons produced by huge enterprises threaten water systems across the world. In order to protect our drinking water from pollution, we must keep a close eye on the situation. Nanotechnology, specifically two-dimensional (2D) nanomaterials, is used in certain wastewater treatment systems. Graphene, g-C3N4, MoS2, and MXene are just a few examples of emerging 2D nanomaterials that exhibit an extraordinary ratio of surface (m3), providing material consumption, time consumption, and treatment technique for cleaning and observing water. In this post, we'll talk about the ways in which 2D nanomaterials may be tuned to perform certain functions, namely how they can be used for water management. The following is a quick overview of nanostructured materials and its possible use in water management: Also discussed in length are the applications of 2D nanomaterials in water purification, including pollutant adsorption, filtration, disinfection, and photocatalysis. Fluorescence sensors, colorimetric, electrochemical, and field-effect transistors are only some of the devices being studied for their potential use in monitoring water quality using 2D nanomaterials. Utilizing 2D content has its benefits and pitfalls when used to water management. New developments in this fast-expanding business will boost water treatment quality and accessibility in response to rising awareness of the need of clean, fresh water among future generations.


Subject(s)
Nanostructures , Water Purification , Nanostructures/chemistry , Nanotechnology/methods , Water Purification/methods , Water Quality
4.
Braz J Biol ; 83: e271055, 2023.
Article in English | MEDLINE | ID: mdl-36995829

ABSTRACT

Chelates are nutrient-rich compounds that enhance the condition of plant tissues as micronutrients. Micronutrient deficiencies particularly iron (Fe) and zinc (Zn) leads to various problems for plant including chlorosis and necrosis etc. An adequate intake of Fe and Zn etc. is required by the human body. Biofortification of cereals with Fe and Zn is seen as a cost-effective solution to the problem of Fe and Zn deficiencies as well. In recent decades, many chelating compounds have been established and incorporated into agricultural systems. The most recent formulation involves the use of amino acids synthesized with one or more nutrient ions to improve fertilizer efficiency and better respond to environmental conservation. In addition to its primary function as a source of micronutrients, aminochelled are an active nitrogen (N) stimulant in plant nutrition, preventing the negative effects of basic N fertilizers like urea. The use of amino chelates, rather than just chemical fertilizers, has been shown to provide better production and quality as well as higher nutritional concentrations in several experiments. Furthermore, this review sheds light on various aspects of amino chelates fertilizers including types, history, and their effects on agricultural crops. In spite of amino chelates fast dominance in many countries' fertilizer countries, there is not enough scientific data and knowledge on the specific reactions of plants to biotic and abiotic stresses from amino fertilizers.


Subject(s)
Fertilizers , Iron , Humans , Iron/metabolism , Agriculture , Zinc/metabolism , Micronutrients/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...