Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877923

ABSTRACT

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

2.
Phys Rev Lett ; 129(21): 212502, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461972

ABSTRACT

The new isotope ^{39}Na, the most neutron-rich sodium nucleus observed so far, was discovered at the RIKEN Nishina Center Radioactive Isotope Beam Factory using the projectile fragmentation of an intense ^{48}Ca beam at 345 MeV/nucleon on a beryllium target. Projectile fragments were separated and identified in flight with the large-acceptance two-stage separator BigRIPS. Nine ^{39}Na events have been unambiguously observed in this work and clearly establish the particle stability of ^{39}Na. Furthermore, the lack of observation of ^{35,36}Ne isotopes in this experiment significantly improves the overall confidence that ^{34}Ne is the neutron dripline nucleus of neon. These results provide new key information to understand nuclear binding and nuclear structure under extremely neutron-rich conditions. The newly established stability of ^{39}Na has a significant impact on nuclear models and theories predicting the neutron dripline and also provides a key to understanding the nuclear shell property of ^{39}Na at the neutron number N=28, which is normally a magic number.

4.
Phys Rev Lett ; 124(11): 112501, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242689

ABSTRACT

The gyromagnetic factor of the low-lying E=251.96(9) keV isomeric state of the nucleus ^{99}Zr was measured using the time-dependent perturbed angular distribution technique. This level is assigned a spin and parity of J^{π}=7/2^{+}, with a half-life of T_{1/2}=336(5) ns. The isomer was produced and spin aligned via the abrasion-fission of a ^{238}U primary beam at RIKEN RIBF. A magnetic moment |µ|=2.31(14)µ_{N} was deduced showing that this isomer is not single particle in nature. A comparison of the experimental values with interacting boson-fermion model IBFM-1 results shows that this state is strongly mixed with a main νd_{5/2} composition. Furthermore, it was found that monopole single-particle evolution changes significantly with the appearance of collective modes, likely due to type-II shell evolution.

5.
Sci Adv ; 5(7): eaax0495, 2019 07.
Article in English | MEDLINE | ID: mdl-31281899

ABSTRACT

Agitoxin-2 (AgTx2) from scorpion venom is a potent blocker of K+ channels. The docking model has been elucidated, but it remains unclear whether binding dynamics are described by a two-state model (AgTx2-bound and AgTx2-unbound) or a more complicated mechanism, such as induced fit or conformational selection. Here, we observed the binding dynamics of AgTx2 to the KcsA channel using high-speed atomic force microscopy. From images of repeated binding and dissociation of AgTx2 to the channel, single-molecule kinetic analyses revealed that the affinity of the channel for AgTx2 increased during persistent binding and decreased during persistent dissociation. We propose a four-state model, including high- and low-affinity states of the channel, with relevant rate constants. An induced-fit pathway was dominant and accelerated binding by 400 times. This is the first analytical imaging of scorpion toxin binding in real time, which is applicable to various biological dynamics including channel ligands, DNA-modifier proteins, and antigen-antibody complexes.


Subject(s)
Arthropod Proteins/chemistry , Models, Molecular , Potassium Channels/chemistry , Scorpion Venoms/chemistry , Microscopy, Atomic Force , Protein Binding , Recombinant Proteins/chemistry
6.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31283269

ABSTRACT

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

7.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31283301

ABSTRACT

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

8.
Phys Rev Lett ; 121(13): 132501, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312098

ABSTRACT

The key parameter to discuss the possibility of the pion condensation in nuclear matter, i.e., the so-called Landau-Migdal parameter g^{'}, was extracted by measuring the double-differential cross sections for the (p,n) reaction at 216 MeV/u on a neutron-rich doubly magic unstable nucleus, ^{132}Sn with the quality comparable to data taken with stable nuclei. The extracted strengths for Gamow-Teller (GT) transitions from ^{132}Sn leading to ^{132}Sb exhibit the GT giant resonance (GTR) at the excitation energy of 16.3±0.4(stat)±0.4(syst) MeV with the width of Γ=4.7±0.8 MeV. The integrated GT strength up to E_{x}=25 MeV is S_{GT}^{-}=53±5(stat)_{-10}^{+11}(syst), corresponding to 56% of Ikeda's sum rule of 3(N-Z)=96. The present result accurately constrains the Landau-Migdal parameter as g^{'}=0.68±0.07, thanks to the high sensitivity of the GTR energy to g^{'}. In combination with previous studies on the GTR for ^{90}Zr and ^{208}Pb, the result of this work shows the constancy of this parameter in the nuclear chart region with (N-Z)/A=0.11 to 0.24 and A=90 to 208.

9.
Phys Rev Lett ; 121(2): 022501, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30085743

ABSTRACT

The discovery of the important neutron-rich nucleus _{20}^{60}Ca_{40} and seven others near the limits of nuclear stability is reported from the fragmentation of a 345 MeV/u ^{70}Zn projectile beam on ^{9}Be targets at the radioactive ion-beam factory of the RIKEN Nishina Center. The produced fragments were analyzed and unambiguously identified using the BigRIPS two-stage in-flight separator. The eight new neutron-rich nuclei discovered, ^{47}P, ^{49}S, ^{52}Cl, ^{54}Ar, ^{57}K, ^{59,60}Ca, and ^{62}Sc, are the most neutron-rich isotopes of the respective elements. In addition, one event consistent with ^{59}K was registered. The results are compared with the drip lines predicted by a variety of mass models and it is found that the models in best agreement with the observed limits of existence in the explored region tend to predict the even-mass Ca isotopes to be bound out to at least ^{70}Ca.

10.
Phys Rev Lett ; 119(19): 192503, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29219499

ABSTRACT

In this Letter, the observation of two previously unknown isotopes is presented for the first time: ^{72}Rb with 14 observed events and ^{77}Zr with one observed event. From the nonobservation of the less proton-rich nucleus ^{73}Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For ^{72}Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, ^{72}Rb, with a less exotic odd-even neighbor, ^{73}Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The ^{72}Rb half-life is consistent with a 5^{+}→5/2^{-} proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9^{+}(^{72}Rb)→9/2^{+}(^{71}Kr) isomeric states with a broken mirror symmetry. These results imply that ^{72}Kr is a strong waiting point in x-ray burst rp-process scenarios.

11.
Phys Rev Lett ; 118(24): 242502, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28665637

ABSTRACT

The level structure of the neutron-rich ^{77}Cu nucleus is investigated through ß-delayed γ-ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of ^{77}Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in ^{77}Cu are identified for the first time by correlating γ rays with the ß decay of ^{77}Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near ^{78}Ni and suggests a single-particle nature for both the 5/2_{1}^{-} and 3/2_{1}^{-} states in ^{77}Cu, leading to doubly magic ^{78}Ni.

12.
Phys Rev Lett ; 118(7): 072701, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28256889

ABSTRACT

The ß-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of ß-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.

13.
Phys Rev Lett ; 117(16): 162501, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792367

ABSTRACT

In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from ^{67}Kr. At the same time, no evidence for 2p emission of ^{59}Ge and ^{63}Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to ^{67}Kr as being the best new candidate among the three for two-proton radioactivity. ^{67}Kr is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of ^{67}Kr is 7.4(30) ms.

14.
Phys Rev Lett ; 116(16): 162501, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152796

ABSTRACT

Several new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure. Production cross sections for nuclei in the vicinity of ^{100}Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

15.
Phys Rev Lett ; 114(25): 252501, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197123

ABSTRACT

The low-lying structure of the neutron-rich nucleus (50)Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ-ray spectroscopy with (9)Be((54)Ca,(50)Ar+γ)X, (9)Be((55)Sc,(50)Ar+γ)X, and (9)Be((56)Ti,(50)Ar+γ)X multinucleon removal reactions at ∼220 MeV/u. A γ-ray peak at 1178(18) keV is reported and assigned as the transition from the first 2(+) state to the 0(+) ground state. A weaker, tentative line at 1582(38) keV is suggested as the 4(1)(+)→2(1)(+) transition. The experimental results are compared to large-scale shell-model calculations performed in the sdpf model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for (50)Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N=32 subshell gap in (50)Ar is similar in magnitude to those in (52)Ca and (54)Ti and, notably, predict an N=34 subshell closure in (52)Ar that is larger than the one recently reported in (54)Ca.

16.
Phys Rev Lett ; 114(19): 192501, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024165

ABSTRACT

The ß-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

17.
Phys Rev Lett ; 113(13): 132502, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25302883

ABSTRACT

Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³8U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³6Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 41⁺ state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6⁺→4⁺) rate of ¹³6Sn. These data provide a key benchmark for shell-model interactions far from stability.

18.
Phys Rev Lett ; 113(4): 042502, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105611

ABSTRACT

A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, ß decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.

19.
Phys Rev Lett ; 113(3): 032505, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25083639

ABSTRACT

The half-lives of 20 neutron-rich nuclei with Z=27-30 have been measured at the RIBF, including five new half-lives of (76)Co(21.7(-4.9)(+6.5) ms), (77)Co(13.0(-4.3)(+7.2) ms), (79)Ni(43.0(-7.5)(+8.6) ms), (80)Ni(23.9(-17.2)(+26.0) ms), and (81)Cu(73.2 ± 6.8 ms). In addition, the half-lives of (73-75)Co, (74-78)Ni, (78-80)Cu, and (80-82)Zn were determined with higher precision than previous works. Based on these new results, a systematic study of the ß-decay half-lives has been carried out, which suggests a sizable magicity for both the proton number Z = 28 and the neutron number N=50 in (78)Ni.

20.
Phys Rev Lett ; 112(24): 242501, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24996084

ABSTRACT

Cross sections of 1n-removal reactions from the neutron-rich nucleus (37)Mg on C and Pb targets and the parallel momentum distributions of the (37)Mg residues from the C target have been measured at 240 MeV/nucleon. A combined analysis of these distinct nuclear- and Coulomb-dominated reaction data shows that the (37)Mg ground state has a small 1n separation energy of 0.22(-0.09)(+0.12) MeV and an appreciable p-wave neutron single-particle strength. These results confirm that (37)Mg lies near the edge of the "island of inversion" and has a sizable p-wave neutron halo component, the heaviest such system identified to date.

SELECTION OF CITATIONS
SEARCH DETAIL
...