Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rheumatology (Oxford) ; 61(7): 3049-3059, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34730825

ABSTRACT

OBJECTIVE: To evaluate the dysfunction of B-cell metabolism and its involvement in SLE pathology. METHODS: We assessed the expression of metabolic markers of B cells in the peripheral blood of healthy controls (HCs) and SLE patients by using flow cytometry. In vitro, peripheral B cells were isolated from HCs and SLE patients to investigate the metabolic regulation mechanisms involved in their differentiation. RESULTS: The expression level of DiOc6 (mitochondrial membrane hyperpolarization) was higher in B cells from SLE patients than in HCs, and correlated to the percentage of plasmablasts in CD19+ cells and with SLEDAI, a disease activity score. Stimulation of CD19+ cells with the Toll-like receptor 9 (TLR9) ligand CpG and IFN-α enhanced glycolysis, oxidative phosphorylation (OXPHOS), DiOc6 expression, and plasmablast differentiation in vitro. In the absence of glutamine, both glycolysis and OXPHOS were reduced, and plasmablast differentiation was suppressed, whereas there was no change in the absence of glucose. As glutamine is an important nutrient for protein synthesis, we further investigated the effect of the glutaminase inhibitor BPTES, which inhibits glutamine degradation, on metabolic regulation. BPTES reduced DiOc6 expression, OXPHOS, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) production, plasmablast differentiation without affecting glycolysis. Metformin inhibited CpG- and IFN-α-induced glutamine uptake, mitochondrial functions and suppressed plasmablast differentiation. CONCLUSIONS: Mitochondrial dysfunction in B cells is associated with plasmablast differentiation and disease activity in SLE. Enhanced mitochondrial functions mediated by glutamine metabolism are important for plasmablast differentiation, which may be a potential therapeutic target for SLE.


Subject(s)
Glutamine , Lupus Erythematosus, Systemic , Cell Differentiation , Glutamine/metabolism , Glutamine/pharmacology , Humans , Interferon-alpha/pharmacology , Lupus Erythematosus, Systemic/pathology , Mitochondria , Plasma Cells/metabolism
2.
Rheumatology (Oxford) ; 61(7): 3010-3022, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34791054

ABSTRACT

OBJECTIVE: This study aimed to understand the role of mammalian target of rapamycin (mTOR) in CD8+ cells in the pathogenicity of RA and the changes after treatment with biologic drugs. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from 17 healthy controls and 86 patients with RA. Phosphorylation of mTOR (p-mTOR) and its clinical relevance were evaluated. The role of mTOR in CD8+ cells was also examined in vitro. RESULTS: Patients with RA who had a moderate or high disease activity, were biologic-naïve, and were refractory to MTX were enrolled in this study. The p-mTOR levels in CD8+ cells were higher in patients with RA than in healthy controls, and they positively correlated with the disease activity in such patients. However, after one year of treatment with TNF inhibitors, the p-mTOR levels in CD8+ cells were suppressed and showed a positive correlation with the treatment response, which was not observed in the abatacept-treatment group. In vitro stimulation of CD8+ cells with anti-CD3 and anti-CD28 antibodies induced mTOR phosphorylation and increased the production of granzyme B, granulysin, TNF-α and IFN-γ but decreased the production of granzyme K. However, on treatment with TNF inhibitors, p-mTOR levels in CD8+ cells and granzyme B production decreased, while granzyme K production increased. The production of granulysin and IFN-γ was not affected by the TNF inhibitors. CONCLUSION: These results suggested that mTOR activation in CD8+ cells may be a novel evaluation marker for RA disease activity and a predictive marker of therapeutic response to TNF inhibitors.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor Inhibitors , Arthritis, Rheumatoid/drug therapy , CD8-Positive T-Lymphocytes , Granzymes , Humans , Leukocytes, Mononuclear , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...