Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Congenit Anom (Kyoto) ; 50(1): 1-7, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20201963

ABSTRACT

ABSTRACT GLI3 is the gene responsible for Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS) and Postaxial polydactyly type-A (PAP-A). Genetic polydactyly mice such as Pdn/Pdn (Polydactyly Nagoya), Xt(H)/Xt(H) (Extra toes) and Xt(J)/Xt(J) (Extra toes Jackson) are the mouse homolog of GCPS, and Gli3(tmlUrtt)/Gli3(tmlUrt) is produced as the mouse homolog of PHS. In the present review, relationships between mutation points of GLI3 and Gli3, and resulting phenotypes in humans and mice are described. It has been confirmed that mutation in the upstream or within the zinc finger domain of the GLI3 gene induces GCPS; that in the post-zinc finger region including the protease cleavage site induces PHS; and that in the downstream of the GLI3 gene induces PAP-A. A mimicking phenomenon was observed in the mouse homolog. Therefore, human GLI3 and mouse Gli3 genes have a common structure, and it is suggested here that mutations in the same functional regions produce similar phenotypes in human and mice. The most important issue might be that GCPS and PHS exhibit an autosomal dominant trait, but mouse homologs, such as Pdn/Pdn, Xt(H)/Xt(H), Xt(J)/Xt(J) and Gli3(tmlUrt)/Gli3(tmlUrt), are autosomal recessive traits in the manifestation of similar phenotypes to human diseases. It is discussed here how the reduced amounts of the GLI3 protein, or truncated mutant GLI3 protein, disrupt development of the limbs, head and face.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , Kruppel-Like Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Pallister-Hall Syndrome/genetics , Abnormalities, Multiple/pathology , Animals , Congenital Abnormalities/pathology , Genes, Dominant , Genes, Recessive , Humans , Mice , Mutation , Pallister-Hall Syndrome/pathology , Phenotype , Polydactyly/genetics , Syndactyly/genetics , Zinc Finger Protein Gli3 , Zinc Fingers/genetics
2.
Congenit Anom (Kyoto) ; 50(1): 29-39, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20201966

ABSTRACT

Genetic polydactyly/arhinencephaly mouse embryo, Pdn/Pdn, exhibits suppression of Gli3 gene expression. Ochratoxin A (OTA) is a teratogen that causes neural tube defects (NTD) in mice. We investigated gender-dependent differences in the incidence of NTD induced by OTA in the Pdn/Pdn mouse. After administering 2 mg/kg OTA to Pdn/+ female mice, mated with Pdn/+ males, on day 7.5 of gestation, we examined the genotypes, sex and NTD of fetuses on day 18. Non-treated Pdn/Pdn had a 15.8% risk of NTD, and all NTD fetuses were female. When Pdn/Pdn embryos were exposed to OTA, the incidence of NTD increased to 16 (51.6%) of 31 Pdn/Pdn fetuses, and 10 (71.4%) of 14 male Pdn/Pdn fetuses exhibited NTD. From these results, it was speculated that NTD in OTA-treated male Pdn/Pdn were due to the synergistic effect between depressed Gli3 and altered sex-correlated gene expression from OTA treatment. After treatment with OTA, the embryos were recovered on day 9 and gene expressions, which were correlated with Gli3, telencephalic morphogenesis, formation of gonadal anlage, and gender-dependent differentiation were investigated. From real-time polymerase chain reaction analysis results, it was suggested that the manifestation of NTD in the male OTA-treated Pdn/Pdn might be due to the complicated altered gene expressions among Gli3, Wnt7b, Wnt8b, Fez1, Barx1, Lim1, Dmrt1, Igf1, Fog2, Dax1 and Sox9, and in particular, upregulation and gender-dependent difference in Barx1 and gender-dependent difference in Sox9 gene expressions might be noteworthy findings.


Subject(s)
Holoprosencephaly/genetics , Neural Tube Defects/chemically induced , Ochratoxins , Polydactyly/genetics , Animals , Female , Gene Expression Regulation, Developmental/drug effects , Homeodomain Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Male , Mice , Nerve Tissue Proteins/genetics , SOX9 Transcription Factor/genetics , Sex Factors , Telencephalon/embryology , Transcription Factors/genetics , Zinc Finger Protein Gli3
SELECTION OF CITATIONS
SEARCH DETAIL
...