Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0250517, 2021.
Article in English | MEDLINE | ID: mdl-33951069

ABSTRACT

Bats use echolocation through flexible active sensing via ultrasounds to identify environments suitable for their habitat and foraging. Mimicking the sensing strategies of bats for echolocation, this study examined how humans acquire new acoustic-sensing abilities, and proposes effective strategies for humans. A target geometry identification experiment-involving 15 sighted people without experience of echolocation-was conducted using two targets with different geometries, based on a new sensing system. Broadband frequency-modulated pulses with short inter-pulse intervals (16 ms) were used as a synthetic echolocation signal. Such pulses mimic buzz signals emitted by bats for echolocation prior to capturing their prey. The study participants emitted the signal from a loudspeaker by tapping on Android devices. Because the signal included high-frequency signals up to 41 kHz, the emitted signal and echoes from a stationary or rotating target were recorded using a 1/7-scaled miniature dummy head. Binaural sounds, whose pitch was down-converted, were presented through headphones. This way, time-varying echo information was made available as an acoustic cue for target geometry identification under a rotating condition, as opposed to a stationary one. In both trials, with (i.e., training trials) and without (i.e., test trials) answer feedback immediately after the participants answered, the participants identified the geometries under the rotating condition. Majority of the participants reported using time-varying patterns in terms of echo intensity, timbre, and/or pitch under the rotating condition. The results suggest that using time-varying patterns in echo intensity, timbre, and/or pitch enables humans to identify target geometries. However, performance significantly differed by condition (i.e., stationary vs. rotating) only in the test trials. This difference suggests that time-varying echo information is effective for identifying target geometry through human echolocation especially when echolocators are unable to obtain answer feedback during sensing.


Subject(s)
Biomimetics , Chiroptera/physiology , Echolocation , Animals , Humans
2.
JASA Express Lett ; 1(1): 011202, 2021 Jan.
Article in English | MEDLINE | ID: mdl-36154088

ABSTRACT

In this study, a new research method using psychoacoustic experiments and acoustic simulations is proposed for human echolocation research. A shape discrimination experiment was conducted for sighted people using pitch-converted virtual echoes from targets of dissimilar two-dimensional (2D) shapes. These echoes were simulated using a three-dimensional acoustic simulation based on a finite-difference time-domain method from Bossy, Talmat, and Laugier [(2004). J. Acoust. Soc. Am. 115, 2314-2324]. The experimental and simulation results suggest that the echo timbre and pitch determined based on the sound interference may be effective acoustic cues for 2D shape discrimination. The newly developed research method may lead to more efficient future studies of human echolocation.

3.
J Acoust Soc Am ; 145(4): 2221, 2019 04.
Article in English | MEDLINE | ID: mdl-31046316

ABSTRACT

Echolocating bats exhibit sophisticated sonar behaviors using ultrasounds with actively adjusted acoustic characteristics (e.g., frequency and time-frequency structure) depending on the situation. In this study, the utility of ultrasound in human echolocation was examined. By listening to ultrasonic echoes with a shifted pitch to be audible, the participants (i.e., sighted echolocation novices) could discriminate the three-dimensional (3D) roundness of edge contours. This finding suggests that sounds with suitable wavelengths (i.e., ultrasounds) can provide useful information about 3D shapes. In addition, the shape, texture, and material discrimination experiments were conducted using ultrasonic echoes binaurally measured with a 1/7 scaled miniature dummy head. The acoustic and statistical analyses showed that intensity and timbre cues were useful for shape and texture discriminations, respectively. Furthermore, in the discrimination of objects with various features (e.g., acrylic board and artificial grass), the perceptual distances between objects were more dispersed when frequency-modulated sweep signals were used than when a constant-frequency signal was used. These suggest that suitable signal design, i.e., echolocation sounds employed by bats, allowed echolocation novices to discriminate the 3D shape and texture. This top-down approach using human subjects may be able to efficiently help interpret the sensory perception, "seeing by sound," in bat biosonar.


Subject(s)
Acoustics/instrumentation , Echolocation , Pitch Discrimination , Sound Localization , Adult , Animals , Chiroptera , Female , Hearing Aids/standards , Humans , Male , Psychoacoustics , Ultrasonic Waves
4.
J Acoust Soc Am ; 141(5): EL439, 2017 05.
Article in English | MEDLINE | ID: mdl-28599524

ABSTRACT

Three-dimensional directivity patterns of sonar sounds emitted by Japanese house bats (Pipistrellus abramus) during natural foraging were measured by a 44-channel microphone array. Just before prey capture, the terminal frequency (TF) of emitted sounds decreased, and the beam width (mean ± standard deviation) expanded from 40 ± 10° to 63 ± 9° (horizontal) and from 32 ± 10° to 52 ± 7° (vertical). P. abramus decrease the TF to simultaneously expand the beam width in both the horizontal and vertical planes, while retaining the target within the three-dimensional acoustic field of view at the final stage of capture.


Subject(s)
Acoustics/instrumentation , Chiroptera/psychology , Echolocation , Feeding Behavior , Flight, Animal , Predatory Behavior , Transducers , Vocalization, Animal , Animals , Chiroptera/physiology , Equipment Design , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors
5.
PLoS One ; 12(1): e0169995, 2017.
Article in English | MEDLINE | ID: mdl-28085936

ABSTRACT

Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations, the acoustic sensing and flights of the bats showed narrower vertical ranges than horizontal ranges. This suggests that the bats control their acoustic sensing according to different schemes in the horizontal and vertical planes according to their surroundings. These findings suggest that echolocating bats coordinate their control of the acoustical field of view and flight for consecutive captures in 3D space during natural foraging.


Subject(s)
Acoustics , Anticipation, Psychological , Chiroptera/physiology , Echolocation , Flight, Animal/physiology , Predatory Behavior/physiology , Animals , Attention , Chiroptera/psychology , Computer Simulation , Insecta , Models, Biological , Time Perception
6.
Proc Natl Acad Sci U S A ; 113(17): 4848-52, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27071082

ABSTRACT

When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.


Subject(s)
Anticipation, Psychological , Chiroptera/physiology , Echolocation , Flight, Animal/physiology , Predatory Behavior/physiology , Animals , Attention , Chiroptera/psychology , Computer Simulation , Models, Biological
7.
J Acoust Soc Am ; 136(6): 3389, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25480083

ABSTRACT

Flight paths of echolocating Japanese house bats, Pipistrellus abramus, were tracked during insect hunting in a natural setting using a 32-microphone array. The array surrounded the foraging area, locating each bat, and determined the directional aim of the sonar beam. Successive interceptions, indicated by feeding "buzzes" and post-buzz pauses, occurred singly at intervals from over 20 s down to multiple interceptions at 2-3 s intervals. Bats flew on looping, curved paths. Turning radius tightened as rate of interceptions increased, keeping the bat in a smaller area of higher capture density. Broadcast beams shifted direction during search, often alternating between the direction of flight and another direction where, moments later, the next interception would occur. Broadcasts also shifted direction between the current target and the next target. Bats time-share biosonar attention between objects by alternating acoustic gaze. During search, most interpulse intervals (IPIs) were 70-120 ms, but bats interspersed long IPIs up to 200 ms when the rate of interception was low and flight paths followed broad curves. Mathematical modeling of search paths demonstrated that circular flight-paths with occasional long IPIs would be more effective for target search than either random, correlated random, or linear flights.


Subject(s)
Attention , Auditory Perception , Chiroptera , Echolocation , Predatory Behavior , Animals , Flight, Animal , Japan , Models, Theoretical , Orientation
SELECTION OF CITATIONS
SEARCH DETAIL
...