Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genet ; 138(1): 73-81, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30478644

ABSTRACT

Different types of large NF1 deletion are distinguishable by breakpoint location and potentially also by the frequency of mosaicism with normal cells lacking the deletion. However, low-grade mosaicism with fewer than 10% normal cells has not yet been excluded for all NF1 deletion types since it is impossible to assess by the standard techniques used to identify such deletions, including MLPA and array analysis. Here, we used ultra-deep amplicon sequencing to investigate the presence of normal cells in the blood of 20 patients with type-1 NF1 deletions lacking mosaicism according to MLPA. The ultra-deep sequencing entailed the screening of 96 amplicons for heterozygous SNVs located within the NF1 deletion region. DNA samples from three previously identified patients with type-2 NF1 deletions and low-grade mosaicism with normal cells as determined by FISH or microsatellite marker analysis were used to validate our methodology. In these type-2 NF1 deletion samples, proportions of 5.3%, 6.6% and 15.0% normal cells, respectively, were detected by ultra-deep amplicon sequencing. However, using this highly sensitive method, none of the 20 patients with type-1 NF1 deletions included in our analysis exhibited low-grade mosaicism with normal cells in blood, thereby supporting the view that the vast majority of type-1 deletions are germline deletions.


Subject(s)
Biomarkers/analysis , Gene Deletion , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Neurofibromatosis 1/genetics , Neurofibromin 1/blood , Neurofibromin 1/genetics , Humans , Neurofibromatosis 1/blood , Neurofibromatosis 1/pathology , Prognosis
2.
Hum Genet ; 137(6-7): 511-520, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29992513

ABSTRACT

The breakpoints of type-1 NF1 deletions encompassing 1.4-Mb are located within NF1-REPa and NF1-REPc, which exhibit a complex structure comprising different segmental duplications in direct and inverted orientation. Here, we systematically assessed the proportion of type-1 NF1 deletions caused by nonallelic homologous recombination (NAHR) and those mediated by other mutational mechanisms. To this end, we analyzed 236 unselected type-1 deletions and observed that 179 of them (75.8%) had breakpoints located within the NAHR hotspot PRS2, whereas 39 deletions (16.5%) had breakpoints located within PRS1. Sixteen deletions exhibited breakpoints located outside of these NAHR hotspots but were also mediated by NAHR. Taken together, the breakpoints of 234 (99.2%) of the 236 type-1 NF1 deletions were mediated by NAHR. Thus, NF1-REPa and NF1-REPc are strongly predisposed to recurrent NAHR, the main mechanism underlying type-1 NF1 deletions. We also observed a non-random overlap between type-1 NF1-deletion breakpoints and G-quadruplex forming sequences (GQs) as well as regions flanking PRDM9A binding-sites. These findings imply that GQs and PRDM9A binding-sites contribute to the clustering of type-1 deletion breakpoints. The co-location of both types of sequence was at its highest within PRS2, indicative of their synergistic contribution to the greatly increased NAHR activity within this hotspot.


Subject(s)
G-Quadruplexes , Gene Deletion , Neurofibromin 1/genetics , Female , Homologous Recombination , Humans , Male
3.
Hum Genet ; 137(6-7): 543-552, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30006736

ABSTRACT

Schwannomatosis and neurofibromatosis type 2 (NF2) are both characterized by the development of multiple schwannomas but represent different genetic entities. Whereas NF2 is caused by mutations of the NF2 gene, schwannomatosis is associated with germline mutations of SMARCB1 or LZTR1. Here, we studied 15 sporadic patients with multiple non-intradermal schwannomas, but lacking vestibular schwannomas and ophthalmological abnormalities, who fulfilled the clinical diagnostic criteria for schwannomatosis. None of them harboured germline NF2 or SMARCB1 mutations as determined by the analysis of blood samples but seven had germline LZTR1 variants predicted to be pathogenic. At least two independent schwannomas from each patient were subjected to NF2 mutation testing. In five of the 15 patients, identical somatic NF2 mutations were identified (33%). If only those patients without germline LZTR1 variants are considered (n = 8), three of them (37.5%) had mosaic NF2 as concluded from identical NF2 mutations identified in independent schwannomas from the same patient. These findings imply that a sizeable proportion of patients who fulfil the diagnostic criteria for schwannomatosis, are actually examples of mosaic NF2. Hence, the molecular characterization of tumours in patients with a clinical diagnosis of schwannomatosis is very important. Remarkably, two of the patients with germline LZTR1 variants also had identical NF2 mutations in independent schwannomas from each patient which renders differential diagnosis of LZTR1-associated schwannomatosis versus mosaic NF2 in these patients very difficult.


Subject(s)
Genotype , Germ-Line Mutation , Neurilemmoma/genetics , Neurofibromatoses/genetics , Neurofibromatosis 2/genetics , Neurofibrosarcoma/genetics , Skin Neoplasms/genetics , Adolescent , Adult , Female , Humans , Male , Middle Aged , Neurilemmoma/pathology , Neurofibromatoses/pathology , Neurofibromatosis 2/pathology , Neurofibrosarcoma/pathology , SMARCB1 Protein/genetics , Skin Neoplasms/pathology , Transcription Factors/genetics
4.
Hum Genet ; 137(5): 365-373, 2018 May.
Article in English | MEDLINE | ID: mdl-29730711

ABSTRACT

Neurofibromatosis type 1 (NF1) is caused, in 4.7-11% of cases, by large deletions encompassing the NF1 gene and its flanking regions within 17q11.2. Different types of large NF1 deletion occur which are distinguishable by their breakpoint location and underlying mutational mechanism. Most common are the type-1 NF1 deletions of 1.4 Mb which exhibit recurrent breakpoints caused by nonallelic homologous recombination (NAHR), also termed unequal crossover. Here, we analyzed 37 unrelated families of patients with de novo type-1 NF1 deletions by means of short tandem repeat (STR) profiling to determine the parental origin of the deletions. We observed that 33 of the 37 type-1 deletions were of maternal origin (89.2% of cases; p < 0.0001). Analysis of the patients' siblings indicated that, in 14 informative cases, ten (71.4%) deletions resulted from interchromosomal unequal crossover during meiosis I. Our findings indicate a strong maternal parent-of-origin bias for type-1 NF1 deletions. A similarly pronounced maternal transmission bias has been reported for recurrent copy number variants (CNVs) within 16p11.2 associated with autism, but not so far for any other NAHR-mediated pathogenic CNVs. Region-specific genomic features are likely to be responsible for the maternal bias in the origin of both the 16p11.2 CNVs and type-1 NF1 deletions.


Subject(s)
DNA Copy Number Variations/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Sequence Deletion/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 17/genetics , Female , Homologous Recombination , Humans , Male , Maternal Inheritance/genetics , Mitosis , Mosaicism , Neurofibromatosis 1/epidemiology , Neurofibromatosis 1/physiopathology
5.
Article in English | MEDLINE | ID: mdl-29779243

ABSTRACT

BACKGROUND: The clinical phenotype associated with germline SMARCB1 mutations has as yet not been fully documented. It is known that germline SMARCB1 mutations may cause rhabdoid tumor predisposition syndrome (RTPS1) or schwannomatosis. However, the co-occurrence of rhabdoid tumor and schwannomas in the same patient has not so far been reported. METHODS: We investigated a family with members harboring a germline SMARCB1 deletion by means of whole-body MRI as well as high-resolution microstructural magnetic resonance neurography (MRN). Breakpoint-spanning PCRs were performed to characterize the SMARCB1 deletion and its segregation in the family. RESULTS: The index patient of this family was in complete continuous remission for an atypical teratoid/rhabdoid tumor (AT/RT) treated at the age of 2 years. However, at the age of 21 years, she exhibited paraparesis of her legs and MRI investigations revealed multiple intrathoracic and spinal schwannomas. Breakpoint-spanning PCRs indicated that the germline deletion segregating in the family encompasses 6.4-kb and includes parts of SMARCB1 intron 7, exons 8-9 and 3.3-kb located telomeric to exon 9 including the SMARCB1 3' UTR. The analysis of sequences at the deletion breakpoints showed that the deletion has been caused by replication errors including template-switching. The patient had inherited the deletion from her 56-year-old healthy mother who did not exhibit schwannomas or other tumors as determined by whole-body MRI. However, MRN of the peripheral nerves of the mother's extremities revealed multiple fascicular microlesions which have been previously identified as indicative of schwannomatosis-associated subclinical peripheral nerve pathology. CONCLUSION: The occurrence of schwannomatosis-associated clinical symptoms independent of the AT/RT as the primary disease should be considered in long-term survivors of AT/RT. Furthermore, our investigations indicate that germline SMARCB1 mutation carriers not presenting RTs or schwannomatosis-associated clinical symptoms may nevertheless exhibit peripheral nerve pathology as revealed by MRN.

6.
Hum Mutat ; 38(12): 1711-1722, 2017 12.
Article in English | MEDLINE | ID: mdl-28862369

ABSTRACT

Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.


Subject(s)
Genome, Human/genetics , Homologous Recombination , Neurofibromatosis 1/genetics , DNA Breaks , DNA Copy Number Variations , Gene Deletion , Haplotypes , Humans
7.
Hum Mol Genet ; 25(3): 484-96, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26614388

ABSTRACT

Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.


Subject(s)
Chromosomes, Human, Pair 17/chemistry , DNA Copy Number Variations , Gene Deletion , Homologous Recombination , Neurofibromin 1/genetics , Chromatin/chemistry , Chromatin/metabolism , Chromosome Mapping , Crossing Over, Genetic , Gene Expression , Genome, Human , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Meiosis , Neurofibromin 1/deficiency , Protein Binding , Segmental Duplications, Genomic
8.
Neurobiol Dis ; 74: 76-88, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447237

ABSTRACT

Inclusions containing Fused in Sarcoma (FUS) are found in familial and sporadic cases of the incurable progressive motor neuron disease amyotrophic lateral sclerosis and in a common form of dementia, frontotemporal dementia. Most disease-associated mutations are located in the C-terminal proline-tyrosine nuclear localization sequence (PY-NLS) of FUS and impair its nuclear import. It has been shown in cell culture that the nuclear import of FUS is mediated by transportin, which binds the PY-NLS and the last arginine/glycine/glycine-rich (RGG) domain of FUS. Methylation of this last RGG domain by protein arginine methyltransferases (PRMTs) weakens transportin binding and therefore impairs nuclear translocation of FUS. To investigate the requirements for the nuclear import of FUS in an in vivo model, we generated different transgenic Drosophila lines expressing human FUS wild type (hFUS wt) and two disease-related variants P525L and R495X, in which the NLS is mutated or completely absent, respectively. To rule out effects caused by heterologous hFUS expression, we analysed the corresponding variants for the Drosophila FUS orthologue Cabeza (Caz wt, P398L, Q349X). Expression of these variants in eyes and motor neurons confirmed the PY-NLS-dependent nuclear localization of FUS/Caz and caused neurodegenerative effects. Surprisingly, FUS/Caz toxicity was correlated to the degree of its nuclear localization in this overexpression model. High levels of nuclear FUS/Caz became insoluble and reduced the endogenous Caz levels, confirming FUS autoregulation in Drosophila. RNAi-mediated knockdown of the two transportin orthologues interfered with the nuclear import of FUS/Caz and also enhanced the eye phenotype. Finally, we screened the Drosophila PRMT proteins (DART1-9) and found that knockdown of Dart1 led to a reduction in methylation of hFUS P525L and aggravated its phenotype. These findings show that the molecular mechanisms controlling the nuclear import of FUS/Caz and FUS autoregulation are conserved between humans and Drosophila. In addition to the well-known neurodegenerative effects of FUS loss-of function, our data suggest toxic potential of overexpressed FUS in the nucleus and of insoluble FUS.


Subject(s)
Active Transport, Cell Nucleus/physiology , Drosophila Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , Transcription Factor TFIID/metabolism , Animals , Animals, Genetically Modified , DNA Methylation/physiology , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster , Eye/metabolism , Eye/pathology , Gene Knockdown Techniques , Humans , Karyopherins/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Movement Disorders/pathology , Movement Disorders/physiopathology , Mutation , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , RNA Interference , RNA-Binding Protein FUS/genetics , RNA-Binding Proteins/genetics , Transcription Factor TFIID/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...