Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(20): 6800-6807, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28489104

ABSTRACT

The internalisation and intra-cellular distribution of carbon nanotubes (CNT) has been quantitatively assessed using imaging flow cytometry. Spatial analysis of the bright field images indicates the presence of a small sub-population (5% of cells) in which the internalised CNTs are packed into pronounced clusters, visible as dark spots due to strong optical scattering by the nanotubes. The area of these spots can be used as a label-free metric of CNT dose and we assess the relative uptake of charge-neutral CNTs, over a 24 hours exposure period across four cell types: J774 mouse macrophage cells, A549 and Calu-6 human lung cancer cells, and MCF-7 human breast cells. The relative dose as indicated by the spot-area metric closely correlates to results using the same CNT preparation, conjugated to a FITC-label and shows pronounced uptake by the J774 cells leading to a mean dose that is >60% higher than for the other cell types. Spatial evaluation of dosing clusters is also used to quantify differences in uptake by J774 cells of CNTs with different surface functionalisation. While the percentage of CNT-cluster positive cells increases from 5% to 19% when switching from charge-neutral CNTs to poly-cationic, dendron functionalised CNTs, the single cell level analysis of internalised clusters indicates a lower dose per cell of poly-cationic CNTs relative to the charge-neutral CNTs. We concluded that there is dose homeostasis i.e., the population-averaged cellular dose of CNTs remained unchanged.

2.
Sci Rep ; 5: 12083, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26165830

ABSTRACT

The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.


Subject(s)
Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Radiofrequency Therapy , Cell Line, Tumor , Cell Movement/physiology , Humans , Phenotype
3.
J Mater Chem B ; 2: 3745-3752, 2014.
Article in English | MEDLINE | ID: mdl-25485110

ABSTRACT

We report on biological performance of organic nanoparticles formed by a simple method based on rapid solvent removal from a volatile microemulsion. The particular focus of the study was on testing the suitability of the method for substances soluble in partially water-miscible organic solvents as well as on evaluating the therapeutic activity of the resultant nanoparticles. Curcumin was employed as a model for hydrophobic drug, and, as it is soluble in water-miscible organic solvents, it was successfully incorporated into a new cyclopentanone-water microemulsion system. During rapid solvent removal by spray-drying, the nanometric droplets of the microemulsion were converted into nanoparticles containing amorphous curcumin with the average size of 20.2±3.4 nm, having ζ potential of -36.2 ±1.8 mV. These nanoparticles were dispersible in water and retained the high loading of the active substance. The therapeutic activity of the resulting nanoparticles was demonstrated in a pancreatic cancer cell line Panc-1. The effective concentration for reducing the metabolic activity was found to be 11.5 µM for nanoparticles compared with 19.5 µM for free curcumin.

4.
J Biomed Biotechnol ; 2007(7): 54169, 2007.
Article in English | MEDLINE | ID: mdl-18273410

ABSTRACT

Colloidal quantum dots (QDs) are now commercially available in a biofunctionalized form, and Förster resonance energy transfer (FRET) between bioconjugated dots and fluorophores within the visible range has been observed. We are particularly interested in the far-red region, as from a biological perspective there are benefits in pushing to approximately 700 nm to minimize optical absorption (ABS) within tissue and to avoid cell autofluorescence. We report on FRET between streptavidin- (STV-) conjugated CdTe quantum dots, Qdot705-STV, with biotinylated DY731-Bio fluorophores in a donor-acceptor assay. We also highlight the changes in DY731-Bio absorptivity during the streptavidin-biotin binding process which can be attributed to the structural reorientation. For fluorescence beyond 700 nm, different alloy compositions are required for the QD core and these changes directly affect the fluorescence decay dynamics producing a marked biexponential decay with a long-lifetime component in excess of 100 nanoseconds. We compare the influence of the two QD relaxation routes upon FRET dynamics in the presence of DY731-Bio.

5.
Appl Opt ; 45(9): 2115-23, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16579582

ABSTRACT

A study of the practicality a simple technique for obtaining time-domain information that uses continuous wave detection of fluorescence is presented. We show that this technique has potential for use in assays for which a change in the lifetime of an indicator occurs in reaction to an analyte, in fluorescence resonance energy transfer, for example, and could be particularly important when one is carrying out such measurements in the scaled-down environment of a lab on a chip (biochip). A rate-equation model is presented that allows an objective analysis to be made of the relative importance of the key measurement parameters: optical saturation of the fluorophore and period of the excitation pulse. An experimental demonstration of the technique that uses a cuvette-based analysis of a carbocyanine dye and for which the excitation source is a 650 nm wavelength, self-pulsing AlGaInP laser diode is compared with the model.


Subject(s)
Algorithms , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Spectrometry, Fluorescence/methods , Stroboscopy/methods , Fluorescent Dyes , Half-Life , Kinetics
6.
J Biomed Opt ; 10(3): 034001, 2005.
Article in English | MEDLINE | ID: mdl-16229645

ABSTRACT

This paper describes the properties of vertical-cavity semiconductor devices designed to emit light when driven in forward bias mode and detect optical radiation at wavelengths longer than that of emission when driven in reverse bias mode. The study of this type of devices is motivated by the miniaturization and integration into a single unit of the three functions that a microfluorimeter has to perform, optical pumping, optical detection, and optical filtering of weak light sources. The devices produced can generate fluorescence with a low output power since their emission wavelength can be tuned with that of maximum absorption of the fluorescent dye. We demonstrate also that they can detect low power fluorescence generated in a small volume of concentrated solution of a commercial dye. These devices can find useful application in microanalytical systems such as microfluidic devices or optical biochips.


Subject(s)
Biosensing Techniques/instrumentation , Lighting/instrumentation , Microfluidic Analytical Techniques/instrumentation , Semiconductors , Spectrometry, Fluorescence/instrumentation , Transducers , Biosensing Techniques/methods , Equipment Design , Equipment Failure Analysis , Lighting/methods , Microfluidic Analytical Techniques/methods , Spectrometry, Fluorescence/methods , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...