Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 801: 149586, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34428662

ABSTRACT

Water scarcity footprint (WSF) is a recent addition to life cycle assessment methodology that has advanced the understanding of freshwater environmental impact. The Available Water Remaining (AWARE) method is one approach that has gained significant traction in WSF applications. While an effective method for determining WSF, the methodology has limitations that constrain capabilities for determining freshwater environmental impact in arid regions. The primary limitation is the inability to compare regions when more water demand exists than what is available which typically occurs in arid regions. This limitation reduces resolution and therefore decision-making capabilities. This work proposes a novel method for determining WSF in arid regions by capturing and quantifying scarcity when water demand is greater than availability. The approach presented here, called the demand to availability (DTA) method, is intended to be used for small-scale, or subregion analyses in areas where truncation occurs using standard AWARE methods. With the regional specificity, unique characterization factors can be developed to enhance deterministic resolution and ultimately improve decision-making abilities. The DTA methods are presented universally, allowing for application and implementation to any region. A case study was developed to demonstrate the effectiveness of the DTA method by analyzing characterization factors (CFs) and alfalfa WSFs in the arid Southwestern United States. Using the standard AWARE methods, this region originally truncated 38% of counties resulting in zero resolution or decision-making abilities. Results of the case study that used the proposed DTA method show an improved resolution in 100% of these counties, both within CF and alfalfa WSF. Although the proposed method is an improvement for understanding WSFs in arid regions, limitations and constraints still exist and are discussed.


Subject(s)
Desert Climate , Water Insecurity , Fresh Water , Southwestern United States , Water
2.
Bioresour Technol ; 196: 431-40, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276094

ABSTRACT

The economic feasibility and environmental impact is investigated for the conversion of agricultural waste, delactosed whey permeate, through yeast fermentation to a renewable diesel via hydrothermal liquefaction. Process feasibility was demonstrated at laboratory-scale with data leveraged to validate systems models used to perform industrial-scale economic and environmental impact analyses. Results show a minimum fuel selling price of $4.78 per gallon of renewable diesel, a net energy ratio of 0.81, and greenhouse gas emissions of 30.0g-CO2-eqMJ(-1). High production costs and greenhouse gas emissions can be attributed to operational temperatures and durations of both fermentation and hydrothermal liquefaction. However, high lipid yields of the yeast counter these operational demands, resulting in a favorable net energy ratio. Results are presented on the optimization of the process based on economy of scale and a sensitivity analysis highlights improvements in conversion efficiency, yeast biomass productivity and hydrotreating efficiency can dramatically improve commercial feasibility.


Subject(s)
Biofuels , Dairying , Environment , Industrial Waste , Yeasts/growth & development , Biofuels/economics , Biomass , Carbon Dioxide/analysis , Fermentation , Greenhouse Effect , Models, Economic , Whey
SELECTION OF CITATIONS
SEARCH DETAIL
...