Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 258: 127242, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535441

ABSTRACT

Polycarboxylate polymers have been common components of consumer and institutional cleaning products for decades. With interest heightened in the potential environmental impact of polymers, the American Cleaning Institute, the industry trade association of the cleaning products industry in the United States, is reassessing the state of the science regarding the environmental safety of polymers in cleaning products. In this case study, acrylic acid homopolymers and acrylic acid-maleic acid copolymers are evaluated using historical ecotoxicity data that have been reported over the past three decades. The evaluation includes an environmental exposure assessment that is based on recent information regarding the occurrence of those ingredients in cleaning products and market sales data for cleaning products sold in the United States. The ecotoxicity of polycarboxylate polymers is generally low. Consequently, the potential environmental risks associated with their use in cleaning products in the United States are low even when applying very conservative assumptions to the environmental exposure assessment. In addition, there are recent supporting conclusions from assessments by the governments of Australia and Canada that polycarboxylate polymers are polymers of low concern, and the U.S. Environmental Protection Agency has included a number of polycarboxylate polymers among the ingredients on its Safer Chemical Ingredients List based on their low hazard profile.


Subject(s)
Acrylates/analysis , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Household Products/analysis , Polymers/analysis , Acrylates/chemistry , Environmental Pollutants/chemistry , Humans , Molecular Structure , Polymers/chemistry , Risk Assessment , United States , United States Environmental Protection Agency
2.
Integr Environ Assess Manag ; 13(1): 85-99, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26799543

ABSTRACT

We have conducted a regional scale risk assessment using the Bayesian Network Relative Risk Model (BN-RRM) to calculate the ecological risks to the South River and upper Shenandoah River study area. Four biological endpoints (smallmouth bass, white sucker, Belted Kingfisher, and Carolina Wren) and 4 abiotic endpoints (Fishing River Use, Swimming River Use, Boating River Use, and Water Quality Standards) were included in this risk assessment, based on stakeholder input. Although mercury (Hg) contamination was the original impetus for the site being remediated, other chemical and physical stressors were evaluated. There were 3 primary conclusions from the BN-RRM results. First, risk varies according to location, type and quality of habitat, and exposure to stressors within the landscape. The patterns of risk can be evaluated with reasonable certitude. Second, overall risk to abiotic endpoints was greater than overall risk to biotic endpoints. By including both biotic and abiotic endpoints, we are able to compare risk to endpoints that represent a wide range of stakeholder values. Third, whereas Hg reduction is the regulatory priority for the South River, Hg is not the only stressor driving risk to the endpoints. Ecological and habitat stressors contribute risk to the endpoints and should be considered when managing this site. This research provides the foundation for evaluating the risks of multiple stressors of the South River to a variety of endpoints. From this foundation, tools for the evaluation of management options and an adaptive management tools have been forged. Integr Environ Assess Manag 2017;13:85-99. © 2016 SETAC.


Subject(s)
Environmental Monitoring/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Bayes Theorem , Ecosystem , Maryland , Models, Theoretical , Risk Assessment/methods , Rivers/chemistry , Stress, Physiological , Virginia , Water Quality
3.
Integr Environ Assess Manag ; 13(1): 115-126, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27253190

ABSTRACT

Adaptive management has been presented as a method for the remediation, restoration, and protection of ecological systems. Recent reviews have found that the implementation of adaptive management has been unsuccessful in many instances. We present a modification of the model first formulated by Wyant and colleagues that puts ecological risk assessment into a central role in the adaptive management process. This construction has 3 overarching segments. Public engagement and governance determine the goals of society by identifying endpoints and specifying constraints such as costs. The research, engineering, risk assessment, and management section contains the decision loop estimating risk, evaluating options, specifying the monitoring program, and incorporating the data to re-evaluate risk. The 3rd component is the recognition that risk and public engagement can be altered by various externalities such as climate change, economics, technological developments, and population growth. We use the South River, Virginia, USA, study area and our previous research to illustrate each of these components. In our example, we use the Bayesian Network Relative Risk Model to estimate risks, evaluate remediation options, and provide lists of monitoring priorities. The research, engineering, risk assessment, and management loop also provides a structure in which data and the records of what worked and what did not, the learning process, can be stored. The learning process is a central part of adaptive management. We conclude that risk assessment can and should become an integral part of the adaptive management process. Integr Environ Assess Manag 2017;13:115-126. © 2016 SETAC.


Subject(s)
Bayes Theorem , Models, Statistical , Risk Management/methods , Water Pollution, Chemical/statistics & numerical data , Ecosystem , Risk Assessment/methods , Rivers/chemistry , Virginia , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...