Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38549434

ABSTRACT

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Subject(s)
Bacteria , Biodegradation, Environmental , Caffeine , Fungi , Caffeine/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism , Fungi/genetics , Yeasts/metabolism , Yeasts/genetics
2.
J Biotechnol ; 379: 25-32, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38029843

ABSTRACT

1-Methylxanthine is a high-value derivative of caffeine of limited natural availability with many potential pharmaceutical applications. Unfortunately, production of 1-methylxanthine through purely chemical methods of synthesis are unfavorable due to lengthy chemical processes and the requirement of hazardous chemicals, ultimately resulting in low yields. Here, we describe a novel biosynthetic process for the production of 1-methylxanthine from theophylline using engineered Escherichia coli whole-cell biocatalysts and reaction optimization. When scaled-up to 1590 mL, the simple biocatalytic reaction produced approximately 1188 mg 1-methylxanthine from 1444 mg theophylline, constituting gram-scale production of 1-methylxanthine in as little as 3 hours. Following HPLC purification and solvent evaporation, 1163 mg of dried 1-methylxanthine powder was collected, resulting in a 97.9 wt% product recovery at a purity of 97.8%. This is the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 1-methylxanthine from theophylline. This process is also the most robust methylxanthine N-demethylation process featuring engineered E. coli to date, capable of gram-scale production.


Subject(s)
Escherichia coli , Theophylline , Theophylline/chemistry , Theophylline/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Caffeine/metabolism , Biodegradation, Environmental
3.
J Biol Eng ; 17(1): 2, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627657

ABSTRACT

BACKGROUND: 7-Methylxanthine, a derivative of caffeine noted for its lack of toxicity and ability to treat and even prevent myopia progression, is a high-value biochemical with limited natural availability. Attempts to produce 7-methylxanthine through purely chemical methods of synthesis are faced with complicated chemical processes and/or the requirement of a variety of hazardous chemicals, resulting in low yields and racemic mixtures of products. In recent years, we have developed engineered microbial cells to produce several methylxanthines, including 3-methylxanthine, theobromine, and paraxanthine. The purpose of this study is to establish a more efficient biosynthetic process for the production of 7-methylxanthine from caffeine. RESULTS: Here, we describe the use of a mixed-culture system composed of Escherichia coli strains engineered as caffeine and theobromine "specialist" cells. Optimal reaction conditions for the maximal conversion of caffeine to 7-methylxanthine were determined to be equal concentrations of caffeine and theobromine specialist cells at an optical density (600 nm) of 50 reacted with 2.5 mM caffeine for 5 h. When scaled-up to 560 mL, the simple biocatalytic reaction produced 183.81 mg 7-methylxanthine from 238.38 mg caffeine under ambient conditions, an 85.6% molar conversion. Following HPLC purification and solvent evaporation, 153.3 mg of dried 7-methylxanthine powder was collected, resulting in an 83.4% product recovery. CONCLUSION: We present the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 7-methylxanthine from caffeine using a mixed culture of E. coli strains. This process constitutes the most efficient method for the production of 7-methylxanthine from caffeine to date.

4.
Biotechnol Bioeng ; 119(11): 3326-3331, 2022 11.
Article in English | MEDLINE | ID: mdl-36059194

ABSTRACT

7-Methylxanthine, a derivative of caffeine (1,3,7-trimethylxanthine), is a high-value compound that has multiple medical applications, particularly with respect to eye health. Here, we demonstrate the biocatalytic production of 7-methylxanthine from caffeine using Escherichia coli strain MBM019, which was constructed for production of paraxanthine (1,7-dimethylxanthine). The mutant N-demethylase NdmA4, which was previously shown to catalyze N3 -demethylation of caffeine to produce paraxanthine, also retains N1 -demethylation activity toward paraxanthine. This study demonstrates that whole cell biocatalysts containing NdmA4 are more active toward paraxanthine than caffeine. We used four serial resting cell assays, with spent cells exchanged for fresh cells between each round, to produce 2,120 µM 7-methylxanthine and 552 µM paraxanthine from 4,331 µM caffeine. The purified 7-methylxanthine and paraxanthine were then isolated via preparatory-scale HPLC, resulting in 177.3 mg 7-methylxanthine and 48.1 mg paraxanthine at high purity. This is the first reported strain genetically optimized for the biosynthetic production of 7-methylxanthine from caffeine.


Subject(s)
Caffeine , Escherichia coli , Escherichia coli/genetics , Oxidoreductases, N-Demethylating , Xanthines
5.
Front Microbiol ; 12: 644768, 2021.
Article in English | MEDLINE | ID: mdl-33889142

ABSTRACT

The coffee berry borer, the most economically important insect pest of coffee worldwide, is the only insect capable of feeding and reproducing solely on the coffee seed, a food source containing the purine alkaloid caffeine. Twenty-one bacterial species associated with coffee berry borers from Hawai'i, Mexico, or a laboratory colony in Maryland (Acinetobacter sp. S40, S54, S55, Bacillus aryabhattai, Delftia lacustris, Erwinia sp. S38, S43, S63, Klebsiella oxytoca, Ochrobactrum sp. S45, S46, Pantoea sp. S61, Pseudomonas aeruginosa, P. parafulva, and Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75) were found to have at least one of five caffeine N-demethylation genes (ndmA, ndmB, ndmC, ndmD, ndmE), with Pseudomonas spp. S31, S32, S37, S60 and P. parafulva having the full complement of these genes. Some of the bacteria carrying the ndm genes were detected in eggs, suggesting possible vertical transmission, while presence of caffeine-degrading bacteria in frass, e.g., P. parafulva (ndmABCDE) and Bacillus aryabhattai (ndmA) could result in horizontal transmission to all insect life stages. Thirty-five bacterial species associated with the insect (Acinetobacter sp. S40, S54, S55, B. aryabhattai, B. cereus group, Bacillus sp. S29, S70, S71, S72, S73, D. lacustris, Erwinia sp. S38, S43, S59, S63, K. oxytoca, Kosakonia cowanii, Ochrobactrum sp. S45, S46, Paenibacillus sp. S28, Pantoea sp. S61, S62, P. aeruginosa, P. parafulva, Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75, Stenotrophomonas sp. S39, S41, S48, S49) might contribute to caffeine breakdown using the C-8 oxidation pathway, based on presence of genes required for this pathway. It is possible that caffeine-degrading bacteria associated with the coffee berry borer originated as epiphytes and endophytes in the coffee plant microbiota.

6.
ACS Omega ; 5(50): 32250-32255, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376862

ABSTRACT

The ß-galactosidase enzyme is a common reporter enzyme that has been used extensively in microbiological and synthetic biology research. Here, we demonstrate that caffeine and theophylline, common natural methylxanthine products found in many foods and pharmaceuticals, negatively impact both the expression and activity of ß-galactosidase in Escherichia coli. The ß-galactosidase activity in E. coli grown with increasing concentrations of caffeine and theophylline was reduced over sixfold in a dose-dependent manner. We also observed decreasing lacZ mRNA transcript levels with increasing methylxanthine concentrations in the growth media. Similarly, caffeine and theophylline inhibit the activity of the purified ß-galactosidase enzyme, with an approximately 1.7-fold increase in K M toward o-nitrophenyl-ß-galactoside and a concomitant decrease in v max. The authors recommend the use of alternative reporter systems when such methylxanthines are expected to be present.

7.
Microbiol Resour Announc ; 9(28)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32646901

ABSTRACT

Pseudomonas strain CES was isolated from caffeine-enriched soil and found to possess the N-demethylation pathway for caffeine breakdown. We report the nucleotide sequence of the draft genome with 5,827,822 bp, 62.6% G+C content, and 5,427 protein-coding regions.

8.
ACS Synth Biol ; 9(4): 682-697, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32142605

ABSTRACT

The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.


Subject(s)
Aptamers, Nucleotide , Cell Engineering , Riboswitch , Theophylline , CRISPR-Cas Systems , Cell Line , Humans , RNA Interference , Synthetic Biology
9.
J Mol Biol ; 431(19): 3647-3661, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31412262

ABSTRACT

Caffeine, found in many foods, beverages, and pharmaceuticals, is the most used chemical compound for mental alertness. It is originally a natural product of plants and exists widely in environmental soil. Some bacteria, such as Pseudomonas putida CBB5, utilize caffeine as a sole carbon and nitrogen source by degrading it through sequential N-demethylation catalyzed by five enzymes (NdmA, NdmB, NdmC, NdmD, and NdmE). The environmentally friendly enzymatic reaction products, methylxanthines, are high-value biochemicals that are used in the pharmaceutical and cosmetic industries. However, the structures and biochemical properties of bacterial N-demethylases remain largely unknown. Here, we report the structures of NdmA and NdmB, the initial N1- and N3-specific demethylases, respectively. Reverse-oriented substrate bindings were observed in the substrate-complexed structures, offering methyl position specificity for proper N-demethylation. For efficient sequential degradation of caffeine, these enzymes form a unique heterocomplex with 3:3 stoichiometry, which was confirmed by enzymatic assays, fluorescent labeling, and small-angle x-ray scattering. The binary structure of NdmA with the ferredoxin domain of NdmD, which is the first structural information for the plant-type ferredoxin domain in a complex state, was also determined to better understand electron transport during N-demethylation. These findings broaden our understanding of the caffeine degradation mechanism by bacterial enzymes and will enable their use for industrial applications.


Subject(s)
Caffeine/metabolism , Oxidoreductases, N-Demethylating/chemistry , Oxidoreductases, N-Demethylating/metabolism , Pseudomonas putida/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Caffeine/chemistry , Crystallography, X-Ray , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oxidoreductases, N-Demethylating/isolation & purification , Protein Domains , Substrate Specificity
10.
Gigascience ; 8(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30535326

ABSTRACT

Big datasets, accumulated from biomedical and agronomic studies, provide the potential to identify genes that control complex human diseases and agriculturally important traits through genome-wide association studies (GWAS). However, big datasets also lead to extreme computational challenges, especially when sophisticated statistical models are employed to simultaneously reduce false positives and false negatives. The newly developed fixed and random model circulating probability unification (FarmCPU) method uses a bin method under the assumption that quantitative trait nucleotides (QTNs) are evenly distributed throughout the genome. The estimated QTNs are used to separate a mixed linear model into a computationally efficient fixed effect model (FEM) and a computationally expensive random effect model (REM), which are then used iteratively. To completely eliminate the computationally expensive REM, we replaced REM with FEM by using Bayesian information criteria. To eliminate the requirement that QTNs be evenly distributed throughout the genome, we replaced the bin method with linkage disequilibrium information. The new method is called Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). Both real and simulated data analyses demonstrated that BLINK improves statistical power compared to FarmCPU, in addition to remarkably reducing computing time. Now, a dataset with one million individuals and one-half million markers can be analyzed within three hours, instead of one week using FarmCPU.


Subject(s)
Genome-Wide Association Study/methods , Models, Statistical , Polymorphism, Single Nucleotide , Software , Animals , Bayes Theorem , Computational Biology/methods , Female , Humans , Linkage Disequilibrium , Male , Models, Genetic , Plants/genetics
11.
Microb Cell Fact ; 14: 203, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26691652

ABSTRACT

BACKGROUND: Methylxanthines are natural and synthetic compounds found in many foods, drinks, pharmaceuticals, and cosmetics. Aside from caffeine, production of many methylxanthines is currently performed by chemical synthesis. This process utilizes many chemicals, multiple reactions, and different reaction conditions, making it complicated, environmentally dissatisfactory, and expensive, especially for monomethylxanthines and paraxanthine. A microbial platform could provide an economical, environmentally friendly approach to produce these chemicals in large quantities. The recently discovered genes in our laboratory from Pseudomonas putida, ndmA, ndmB, and ndmD, provide an excellent starting point for precisely engineering Escherichia coli with various gene combinations to produce specific high-value paraxanthine and 1-, 3-, and 7-methylxanthines from any of the economical feedstocks including caffeine, theobromine or theophylline. Here, we show the first example of direct conversion of theophylline to 3-methylxanthine by a metabolically engineered strain of E. coli. RESULTS: Here we report the construction of E. coli strains with ndmA and ndmD, capable of producing 3-methylxanthine from exogenously fed theophylline. The strains were engineered with various dosages of the ndmA and ndmD genes, screened, and the best strain was selected for large-scale conversion of theophylline to 3-methylxanthine. Strain pDdA grown in super broth was the most efficient strain; 15 mg/mL cells produced 135 mg/L (0.81 mM) 3-methylxanthine from 1 mM theophylline. An additional 21.6 mg/L (0.13 mM) 1-methylxanthine were also produced, attributed to slight activity of NdmA at the N 3 -position of theophylline. The 1- and 3-methylxanthine products were separated by preparative chromatography with less than 5% loss during purification and were identical to commercially available standards. Purity of the isolated 3-methylxanthine was comparable to a commercially available standard, with no contaminant peaks as observed by liquid chromatography-mass spectrophotometry or nuclear magnetic resonance. CONCLUSIONS: We were able to biologically produce and separate 100 mg of highly pure 3-methylxanthine from theophylline (1,3-dimethylxanthine). The N-demethylation reaction was catalyzed by E. coli engineered with N-demethylase genes, ndmA and ndmD. This microbial conversion represents a first step to develop a new biological platform for the production of methylxanthines from economical feedstocks such as caffeine, theobromine, and theophylline.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Theophylline/metabolism , Xanthines/metabolism
12.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067973

ABSTRACT

Pseudomonas putida CBB5 was isolated from soil by enriching for growth on caffeine (1,3,7-trimethylxanthine). The draft genome of this strain is 6.9 Mb, with 5,941 predicted coding sequences. It includes the previously studied Alx gene cluster encoding alkylxanthine N-demethylase enzymes and other genes that enable the degradation of purine alkaloids.

13.
Microb Biotechnol ; 8(3): 369-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25678373

ABSTRACT

The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated.


Subject(s)
Caffeine/metabolism , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/metabolism , Metabolic Networks and Pathways/genetics , Pseudomonas/growth & development , Pseudomonas/metabolism , Biotransformation , Carbon/metabolism , Klebsiella pneumoniae/genetics , Nitrogen/metabolism , Pseudomonas/genetics
14.
J Proteome Res ; 14(1): 95-106, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25350919

ABSTRACT

Understanding the genes and enzymes involved in caffeine metabolism can lead to applications such as production of methylxanthines and environmental waste remediation. Pseudomonas sp. CES may provide insights into these applications, since this bacterium degrades caffeine and thrives in concentrations of caffeine that are three times higher (9.0 g L(-1)) than the maximum tolerable levels of other reported bacteria. We took a novel approach toward identifying the enzymatic pathways in Pseudomonas sp. CES that metabolize caffeine, which largely circumvented the need for exhaustive isolation of enzymes and the stepwise reconstitution of their activities. Here we describe an optimized, rapid alternative strategy based on multiplexed LC-MS/MS assays and show its application by discovering caffeine-degrading enzymes in the CES strain based on quantitative comparison of proteomes from bacteria grown in the absence and presence of caffeine, the latter condition of which was found to have a highly induced capacity for caffeine degradation. Comparisons were made using stable isotope dimethyl labeling, differences in the abundance of particular proteins were substantiated by reciprocal labeling experiments, and the role of the identified proteins in caffeine degradation was independently verified by genetic sequencing. Overall, multiple new components of a N-demethylase system were identified that resulted in rapid pathway validation and gene isolation using this new approach.


Subject(s)
Bacterial Proteins/metabolism , Caffeine/metabolism , Proteome/metabolism , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Metabolic Networks and Pathways , Molecular Sequence Data , Oxidoreductases, N-Demethylating/chemistry , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Proteome/chemistry , Proteome/genetics , Pseudomonas/genetics , Staining and Labeling , Tandem Mass Spectrometry
15.
J Bacteriol ; 195(17): 3933-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23813729

ABSTRACT

Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners.


Subject(s)
Caffeine/metabolism , Glutathione Transferase/metabolism , Oxygenases/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/metabolism , Biotransformation , Carbon/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Order , Glutathione Transferase/genetics , Molecular Sequence Data , Multigene Family , Nitrogen/metabolism , Oxygenases/genetics , Pseudomonas putida/genetics , Sequence Analysis, DNA , Synteny
16.
ACS Synth Biol ; 2(6): 301-7, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23654268

ABSTRACT

The widespread use of caffeine (1,3,7-trimethylxanthine) and other methylxanthines in beverages and pharmaceuticals has led to significant environmental pollution. We have developed a portable caffeine degradation operon by refactoring the alkylxanthine degradation (Alx) gene cluster from Pseudomonas putida CBB5 to function in Escherichia coli. In the process, we discovered that adding a glutathione S-transferase from Janthinobacterium sp. Marseille was necessary to achieve N 7 -demethylation activity. E. coli cells with the synthetic operon degrade caffeine to the guanine precursor, xanthine. Cells deficient in de novo guanine biosynthesis that contain the refactored operon are ″addicted″ to caffeine: their growth density is limited by the availability of caffeine or other xanthines. We show that the addicted strain can be used as a biosensor to measure the caffeine content of common beverages. The synthetic N-demethylation operon could be useful for reclaiming nutrient-rich byproducts of coffee bean processing and for the cost-effective bioproduction of methylxanthine drugs.


Subject(s)
Caffeine/metabolism , Escherichia coli/metabolism , Genome, Bacterial , Operon/genetics , Pseudomonas putida/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Beverages/analysis , Biosensing Techniques , Caffeine/analysis , Escherichia coli/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Guanine/biosynthesis , Methylation , Multigene Family , Plasmids/genetics , Plasmids/metabolism , Xanthine/chemistry , Xanthine/metabolism , Xanthines/chemistry , Xanthines/metabolism
17.
J Bacteriol ; 194(8): 2041-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22328667

ABSTRACT

The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.


Subject(s)
Alkaloids/metabolism , Caffeine/metabolism , Oxidoreductases, N-Demethylating/metabolism , Pseudomonas putida/enzymology , Purines/metabolism , Alkaloids/chemistry , Catalytic Domain , Cloning, Molecular , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Models, Molecular , Molecular Sequence Data , Oxidoreductases, N-Demethylating/classification , Oxidoreductases, N-Demethylating/genetics , Protein Conformation , Purines/chemistry
18.
Microbiology (Reading) ; 157(Pt 2): 583-592, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20966097

ABSTRACT

N-Demethylation of many xenobiotics and naturally occurring purine alkaloids such as caffeine and theobromine is primarily catalysed in higher organisms, ranging from fungi to mammals, by the well-studied membrane-associated cytochrome P450s. In contrast, there is no well-characterized enzyme for N-demethylation of purine alkaloids from bacteria, despite several reports on their utilization as sole source of carbon and nitrogen. Here, we provide what we believe to be the first detailed characterization of a purified N-demethylase from Pseudomonas putida CBB5. The soluble N-demethylase holoenzyme is composed of two components, a reductase component with cytochrome c reductase activity (Ccr) and a two-subunit N-demethylase component (Ndm). Ndm, with a native molecular mass of 240 kDa, is composed of NdmA (40 kDa) and NdmB (35 kDa). Ccr transfers reducing equivalents from NAD(P)H to Ndm, which catalyses an oxygen-dependent N-demethylation of methylxanthines to xanthine, formaldehyde and water. Paraxanthine and 7-methylxanthine were determined to be the best substrates, with apparent K(m) and k(cat) values of 50.4±6.8 µM and 16.2±0.6 min(-1), and 63.8±7.5 µM and 94.8±3.0 min(-1), respectively. Ndm also displayed activity towards caffeine, theobromine, theophylline and 3-methylxanthine, all of which are growth substrates for this organism. Ndm was deduced to be a Rieske [2Fe-2S]-domain-containing non-haem iron oxygenase based on (i) its distinct absorption spectrum and (ii) significant identity of the N-terminal sequences of NdmA and NdmB with the gene product of an uncharacterized caffeine demethylase in P. putida IF-3 and a hypothetical protein in Janthinobacterium sp. Marseille, both predicted to be Rieske non-haem iron oxygenases.


Subject(s)
Bacterial Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Pseudomonas putida/enzymology , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Caffeine/metabolism , Carbon/metabolism , Formaldehyde/analysis , Heme Oxygenase (Decyclizing)/isolation & purification , Hydrogen-Ion Concentration , Molecular Sequence Data , Molecular Weight , Nitrogen/metabolism , Sequence Alignment , Substrate Specificity , Theobromine/metabolism , Theophylline/metabolism , Xanthines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...