Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 17(2): 151-160, 2019 03.
Article in English | MEDLINE | ID: mdl-30450841

ABSTRACT

Ooids are accretionary grains commonly reported from turbulent, shallow-water environments. They have long been associated with microbially dominated ecosystems and often occur in close proximity to, or embedded within, stromatolites, yet have historically been thought to form solely through physicochemical processes. Numerous studies have revealed both constructive and destructive roles for microbes colonizing the surfaces of modern calcitic and aragonitic ooids, but there has been little evidence for the operation of these processes during the Archean and Proterozoic, when both ooids and microbially dominated ecosystems were more widespread. Recently described carbonate ooids from the 2.9 Ga Pongola Supergroup, South Africa, include well-preserved examples composed of diagenetic dolomite interpreted to have formed from a high-Mg-calcite precursor. Spatial distributions of organic matter and elements associated with metabolic activity (N, S, and P) were interpreted as evidence for a biologically induced origin. Here, we describe exceptionally well-preserved ooids composed of calcite, collected from Earth's oldest known carbonate lake system, the ~2.72 Ga Meentheena Member (Tumbiana Formation), Fortescue Group, Western Australia. We used optical microscopy, Raman spectroscopy, XRD, SEM-EDS, LA-ICP-MS, EA-IRMS, and a novel micro-XRF instrument to investigate an oolite shoal deposited between stromatolites that preserve abundant evidence for microbial activity. We report an extremely fine, radial-concentric, calcitic microfabric that is similar to the primary and early diagenetic fabrics of calcitic ooids reported from modern temperate lakes. Early diagenetic silica has trapped isotopically light and thermally mature organic matter. The close association of organic matter with mineral phases and microfabrics related to primary and early diagenetic processes suggest incorporation of organic matter occurred during accretion, likely due to the presence of microbial biofilms. We conclude that the oldest known calcitic ooids were likely formed through processes similar to those that mediate the accretion of ooids in similar environments today, including formation within a microbial biosphere.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Calcium Carbonate/analysis , Carbonates/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Paleontology , Western Australia
2.
Rapid Commun Mass Spectrom ; 30(10): 1197-1205, 2016 05 30.
Article in English | MEDLINE | ID: mdl-28328021

ABSTRACT

RATIONALE: The meromictic Fayetteville Green Lake (FGL) is of significant geobiological interest because of microbial cycling of sulfur within and below the permanent chemocline and in the euxinic deep waters. Studies of glycerol dibiphytanyl glycerol tetraethers (GDGTs) may help shed light on understanding the activity of archaeal communities in these habitats. METHODS: Normal-phase and reversed-phase liquid chromatography/mass spectrometry (LC/MS) analysis on total lipid extracts of environmental samples revealed series of GDGTs with different biphytane structures. Comparison of the mass spectrum of biphytane obtained from separated novel GDGTs with that of a synthetic C40 biphytane confirms our structural assignments. RESULTS: A unique cyclohexyl ring configured in the middle of a C40 biphytane chain was identified in these novel GDGTs. We suggest the trivial name S-GDGTs for these compounds, where 'S' stands for 'sulfidic' and 'six-membered ring'. S-GDGT derivatives composed of biphytanes modified with double bonds and cyclopentane rings were also detected in the samples we analyzed. Intact polar lipid precursors of S-GDGT include compounds with mono- and diglycosyl head groups. CONCLUSIONS: The carbon isotopic composition of S-GDGTs and their occurrence in FGL, Messel Shale as well as Salt Pond and salt marshes on Cape Cod suggest that S-GDGTs may be produced by chemoautotrophic archaea that prefer sulfidic conditions. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Archaea/chemistry , Chromatography, Reverse-Phase/methods , Lipids/analysis , Lipids/chemistry , Gas Chromatography-Mass Spectrometry/methods , Glyceryl Ethers , Lakes/microbiology
3.
PLoS One ; 9(6): e101045, 2014.
Article in English | MEDLINE | ID: mdl-24963925

ABSTRACT

Neanderthal dietary reconstructions have, to date, been based on indirect evidence and may underestimate the significance of plants as a food source. While zooarchaeological and stable isotope data have conveyed an image of Neanderthals as largely carnivorous, studies on dental calculus and scattered palaeobotanical evidence suggest some degree of contribution of plants to their diet. However, both views remain plausible and there is no categorical indication of an omnivorous diet. Here we present direct evidence of Neanderthal diet using faecal biomarkers, a valuable analytical tool for identifying dietary provenance. Our gas chromatography-mass spectrometry results from El Salt (Spain), a Middle Palaeolithic site dating to ca. 50,000 yr. BP, represents the oldest positive identification of human faecal matter. We show that Neanderthals, like anatomically modern humans, have a high rate of conversion of cholesterol to coprostanol related to the presence of required bacteria in their guts. Analysis of five sediment samples from different occupation floors suggests that Neanderthals predominantly consumed meat, as indicated by high coprostanol proportions, but also had significant plant intake, as shown by the presence of 5ß-stigmastanol. This study highlights the applicability of the biomarker approach in Pleistocene contexts as a provider of direct palaeodietary information and supports the opportunity for further research into cholesterol metabolism throughout human evolution.


Subject(s)
Biomarkers/analysis , Feces/chemistry , Meals , Neanderthals/physiology , Animals , Cholestanol/analysis , Cholesterol/analysis , Gas Chromatography-Mass Spectrometry , Humans , Sitosterols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...