Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; : e5879, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599673

ABSTRACT

This study aimed to investigate the dissipation pattern, risk assessment, and waiting period of myclobutanil on apple fruit (Malus domestica Borkh.) under temperate conditions in Kashmir, India. The study involved the application of myclobutanil 10 WP at a single recommended dosage (125 g a.i. ha-1) and double dosage (250 g a.i. ha-1) on Red Velox apple trees, 2 months before harvest. GC equipped with an electron capture detector was used to analyze myclobutanil residues in fruit samples. The study revealed that myclobutanil, at both recommended and double recommended doses, dissipated rapidly and became nondetectable after 55 and 60 days, respectively. The waiting period for myclobutanil application was determined to be 12.41 days for the single dose and 25.58 days for the double dose, respectively. These waiting periods were based on the maximum residue limit of 0.6 ppm as prescribed by the Codex Alimentarius Commission, Food Safety and Standards Authority of India, and European Commission. The study concludes that myclobutanil 10 WP is safe for consumers at both recommended and double recommended doses when applied 2 months before harvest. Risk assessment, considering the average daily apple consumption in India and theoretical maximum residue contributions (TMRCs), indicates negligible health hazards even at double the recommended dosage. The calculated TMRC values at Day 0 were significantly below the maximum permissible intake. For average and maximum myclobutanil residues at single and double doses, the TMRC values were found to be 0.0069 and 0.0070 mg day-1 person-1 and 0.0105 and 0.0106 mg day-1 person-1, respectively. These results indicate that myclobutanil, when used according to recommended dosages and waiting periods, poses minimal health risks to consumers. The study emphasizes the importance of prudent fungicide use to minimize fungicide residues on fruits, thereby ensuring their safety for consumption.

2.
Biomed Chromatogr ; 38(5): e5836, 2024 May.
Article in English | MEDLINE | ID: mdl-38308120

ABSTRACT

Apple, a major fruit of temperate Himalayas, is sprayed with chemical pesticides around 12 times during the cropping season. Various systemic and contact fungicides are applied for the management of major diseases. In order to manage disease, flusilazole 40 EC is frequently used. However, excessive chemical application has been found to be detrimental for consumer safety. Keeping in view consumer safety, risk assessment, the half-life and waiting period for flusilazole 40 EC were evaluated on the Red Velox variety of apple. The QuEChERS (quick, easy, cheap, effective, rugged and safe) method and high-performance liquid chromatography were adapted for sample processing and analysis, respectively. The recovery percentages of flusilazole at three fortification levels (0.04, 0.09 and 0.50 mg kg-1) were 98.85, 99.83 and 98.98%, respectively. Flusilazole at the recommended dose (80 g a.i. ha-1) left an initial deposit of 0.733 mg kg-1, which dissipated by 93.45% in 60 days and was non-detectable beyond this period. Meanwhile flusilazole at double the recommended dose (160 g a.i. ha-1) left an initial deposit of 0.913 mg kg-1, which dissipated by 93.43% in 70 days and was non-detectable beyond this period. Based on the maximum residue limit of 0.3 mg kg-1 as prescribed by the Codex Alimentarius Commission, a waiting period of 28.74 and 46.03 days was recorded for single and double doses, respectively. Moreover, in order to assess the consumer risk, theoretical maximum residue contributions (TMRCs) were derived using flusilazole residues (average and maximum) recorded at various time intervals and compared with the maximum permissible intake, which was found to be 0.42 mg per person per day. Based on the average per capita daily consumption of 6.76 g apple in India, the TMRC values were computed. Although the values of TMRC decreased below maximum permissible intake at the first day after application, indicating minimal consumer health risks, fruits sprayed with a double dose of flusilazole carried the risk even up to the tenth day after flusilazole application. The results of the present study will be valuable for safe and timely use of flusilazole on apple.


Subject(s)
Fungicides, Industrial , Limit of Detection , Malus , Pesticide Residues , Silanes , Triazoles , Malus/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Triazoles/analysis , Triazoles/chemistry , Fungicides, Industrial/analysis , Reproducibility of Results , Risk Assessment , Linear Models , Food Contamination/analysis
3.
Phytopathology ; 113(5): 836-846, 2023 May.
Article in English | MEDLINE | ID: mdl-36734935

ABSTRACT

Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. ciceri is a devastating disease of chickpea (Cicer arietinum). To identify promising resistant genotypes and genomic loci for FW resistance, a core set of 179 genotypes of chickpea was tested for FW reactions at the seedling and reproductive stages under field conditions and controlled conditions in the greenhouse. Our results revealed that at the seedling stage, most of the genotypes were resistant, whereas at the reproductive stage, most of the genotypes were susceptible. Genotyping using a 50K Axiom® CicerSNP Array and trait data of FW together led to the identification of 26 significant (P ≤ E-05) marker-trait associations (MTAs) for FW resistance. Among the 26 MTAs, 12 were identified using trait data recorded in the field (three at the seedling and nine at the reproductive stage), and 14 were identified using trait data recorded under controlled conditions in the greenhouse (six at the seedling and eight at the reproductive stage). The phenotypic variation explained by these MTAs varied from 11.75 to 15.86%, with an average of 13.77%. Five MTAs were classified as major, explaining more than 15% of the phenotypic variation for FW, and two were declared stable, being identified in two environments. One of the promising stable and major MTAs (Affx_123280060) detected in field conditions at the reproductive stage was also detected in greenhouse conditions at the seedling and reproductive stages. The stable and major (>15% PVE) MTAs can be used in chickpea breeding programs.


Subject(s)
Cicer , Fusarium , Cicer/genetics , Fusarium/genetics , Plant Diseases/genetics , Plant Breeding , Phenotype
4.
Saudi J Biol Sci ; 28(12): 7550-7560, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34867059

ABSTRACT

One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3-5); inoculum size(1-5 mL) and fermentation time (3-15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.

5.
Saudi J Biol Sci ; 28(10): 5986-5992, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588915

ABSTRACT

Investigation of genetic variability and population relationship of 50 accessions of the apricot (Prunus armeniaca L.) was carried out using ISSR markers. The results revealed that the number of alleles per locus varied from 4 to 8 with a mean value of 6.75, and the mean effective number of alleles (Ne) per locus was 1.54. Similarly, the polymorphic information content (PIC) values ranged from 0.464 to 0.424, with a mean value of 0.424. The mean heterozygosity, marker index, resolving power, and effective multiplex ratio (EMR) ranged from 0.001 to 0.002, 0.01-0.06, 1.76-3.84, and 1-4.12. The dendrogram clustered genotypes into two main clades based on their origins. The population structure revealed two sub-populations with some admixtures. The average expected heterozygosity and population differentiation within two sub-populations was 0.1428 and 0.216, respectively. The results outcome reveals that the four ISSR markers comprehensively separated the indigenous germplasm from the exotic germplasm. The genetic divergence within indigenous genotypes and exotic genotypes could allow for future insights into apricot breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...