Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(2): e17217, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014715

ABSTRACT

Social insect reproductives and non-reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non-reproductives and reproductives of the facultatively social species Liostenogaster flavolineata, a representative of one of the simplest forms of social living. By experimentally manipulating the reproductive 'queues' exhibited by social colonies of this species, we show that reproductive division of labour in this species is associated with transcriptomic signatures that are more subtle and variable than those observed in social taxa in which colony living has become obligate; that variation in gene expression among non-reproductives reflects their investment into foraging effort more than their social rank; and that genes associated with reproductive division of labour overlap to some extent with those underlying division of labour in the separate polistine origin of wasp sociality but only explain a small portion of overall variation in this trait. These results indicate that broad patterns of within-colony transcriptomic differentiation in this species are similar to those in Polistinae but offer little support for the existence of a strongly conserved 'toolkit' for sociality.


Subject(s)
Wasps , Bees/genetics , Animals , Wasps/genetics , Social Behavior , Social Dominance , Gene Expression Profiling , Transcriptome/genetics , Reproduction/genetics
2.
Proc Biol Sci ; 290(2013): 20232274, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38113935

ABSTRACT

The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.


Subject(s)
Animal Communication , Brain , Bees/genetics , Animals , Learning , Mushroom Bodies , Gene Expression Profiling
3.
Insect Mol Biol ; 32(6): 634-647, 2023 12.
Article in English | MEDLINE | ID: mdl-37599385

ABSTRACT

Monitoring insect genetic diversity and population structure has never been more important to manage the biodiversity crisis. Citizen science has become an increasingly popular tool to gather ecological data affordably across a wide range of spatial and temporal scales. To date, most insect-related citizen science initiatives have focused on occurrence and abundance data. Here, we show that poorly preserved insect samples collected by citizen scientists can yield population genetic information, providing new insights into population connectivity, genetic diversity and dispersal behaviour of little-studied insects. We analysed social wasps collected by participants of the Big Wasp Survey, a citizen science project that aims to map the diversity and distributions of vespine wasps in the UK. Although Vespula vulgaris is a notorious invasive species around the world, it remains poorly studied in its native range. We used these data to assess the population genetic structure of the common yellowjacket V. vulgaris at different spatial scales. We found a single, panmictic population across the UK with little evidence of population genetic structuring; the only possible limit to gene flow is the Irish sea, resulting in significant differentiation between the Northern Ireland and mainland UK populations. Our results suggest that queens disperse considerable distances from their natal nests to found new nests, resulting in high rates of gene flow and thus little differentiation across the landscape. Citizen science data has made it feasible to perform this study, and we hope that it will encourage future projects to adopt similar practices in insect population monitoring.


Subject(s)
Citizen Science , Wasps , Animals , Wasps/genetics , Insecta , Introduced Species , Genetics, Population
4.
Sci Rep ; 13(1): 6232, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085574

ABSTRACT

Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.


Subject(s)
Wasps , Animals , Wasps/genetics , Introduced Species , Reproduction
5.
Nat Commun ; 14(1): 1046, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828829

ABSTRACT

A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.


Subject(s)
Wasps , Animals , Wasps/physiology , Evolution, Molecular , Transcriptome , Social Behavior
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220076, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802779

ABSTRACT

Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Biological Evolution , Social Behavior , Animals , Insecta
7.
Genome Biol Evol ; 15(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36527688

ABSTRACT

The evolution of eusociality requires that individuals forgo some or all their own reproduction to assist the reproduction of others in their group, such as a primary egg-laying queen. A major open question is how genes and genetic pathways sculpt the evolution of eusociality, especially in rudimentary forms of sociality-those with smaller cooperative nests when compared with species such as honeybees that possess large societies. We lack comprehensive comparative studies examining shared patterns and processes across multiple social lineages. Here we examine the mechanisms of molecular convergence across two lineages of bees and wasps exhibiting such rudimentary societies. These societies consist of few individuals and their life histories range from facultative to obligately social. Using six species across four independent origins of sociality, we conduct a comparative meta-analysis of publicly available transcriptomes. Standard methods detected little similarity in patterns of differential gene expression in brain transcriptomes among reproductive and non-reproductive individuals across species. By contrast, both supervised machine learning and consensus co-expression network approaches uncovered sets of genes with conserved expression patterns among reproductive and non-reproductive phenotypes across species. These sets overlap substantially, and may comprise a shared genetic "toolkit" for sociality across the distantly related taxa of bees and wasps and independently evolved lineages of sociality. We also found many lineage-specific genes and co-expression modules associated with social phenotypes and possible signatures of shared life-history traits. These results reveal how taxon-specific molecular mechanisms complement a core toolkit of molecular processes in sculpting traits related to the evolution of eusociality.


Subject(s)
Gene Regulatory Networks , Wasps , Bees/genetics , Animals , Social Behavior , Wasps/genetics , Transcriptome , Reproduction/genetics , Machine Learning
8.
Cell Syst ; 13(9): 768-779.e4, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36044898

ABSTRACT

Biological systems have the capacity to not only build and robustly maintain complex structures but also to rapidly break up and rebuild such structures. Here, using primitive societies of Polistes wasps, we show that both robust specialization and rapid plasticity are emergent properties of multi-scale dynamics. We combine theory with experiments that, after perturbing the social structure by removing the queen, correlate time-resolved multi-omics with video recordings. We show that the queen-worker dimorphism relies on the balance between the development of a molecular queen phenotype in all insects and colony-scale inhibition of this phenotype via asymmetric interactions. This allows Polistes to be stable against intrinsic perturbations of molecular states while reacting plastically to extrinsic cues affecting the whole society. Long-term stability of the social structure is reinforced by dynamic DNA methylation. Our study provides a general principle of how both specialization and plasticity can be achieved in biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Wasps , Animals , DNA Methylation , Phenotype , Wasps/genetics
9.
Proc Biol Sci ; 288(1950): 20210275, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33947238

ABSTRACT

Stable social groups usually consist of families. However, recent studies have revealed higher level social structure, with interactions between family groups across different levels of social organization in multiple species. The explanations for why this apparently paradoxical behaviour arises appear to be varied and remain untested. Here, we use automated radio-tagging data from over 1000 wasps from 93 nests and social network analyses of over 30 000 nest visitation records to describe and explain interactions across levels of social organization in the eusocial paper wasp Polistes canadensis. We detected three levels of social organization (nest, aggregation and community) which exchange 'drifter' individuals within and between levels. The highest level (community) may be influenced by the patchiness of high-quality nesting habitats in which these insects exist. Networks of drifter movements were explained by the distance between nests, the group size of donor nests and the worker-to-brood ratios on donor and recipient nests. These findings provide some explanation for the multi-level social interactions, which may otherwise seem paradoxical. Fitness benefits across multiple levels of social organization should be considered when trying to understand animal societies.


Subject(s)
Nesting Behavior , Wasps , Animals , Ecosystem , Social Behavior , Social Interaction
10.
Biol Rev Camb Philos Soc ; 96(4): 1645-1675, 2021 08.
Article in English | MEDLINE | ID: mdl-33913243

ABSTRACT

The aculeate wasps are one of the most diverse and speciose insect taxa; they are omnipresent across ecosystems and exhibit diverse co-evolutionary and exploitative associations with other organisms. There is widespread conjecture that aculeate wasps are likely to perform essential ecological and economic services of importance to the health, well-being and nutritional needs of our planet. However, the scope and nature of the ecosystem services they provide are not well understood relative to other insect groups (e.g. bees, butterflies, beetles); an appreciation of their value is further tarnished by their public reputation as pointless pests. Here, we conduct the first comprehensive review of how aculeate wasps contribute to the four main areas of ecosystem services: regulatory, provisioning, supporting and cultural services. Uniting data from a large but previously disconnected literature on solitary and social aculeate wasps, we provide a synthesis on how these insects perform important ecosystem services as parasites, predators, biological indicators, pollinators, decomposers and seed dispersers; and their additional services as a sustainable alternative to meat for human consumption, and medicinal potential as sources of research leads for anti-microbials and cancer treatments. We highlight how aculeate wasps offer substantial, but largely overlooked, economic benefits through their roles in natural pest management and biological control programs. Accordingly, we provide data-driven arguments for reasons to consider the ecosystem service value of aculeate wasps on a par with other 'useful' insects (e.g. bees). Finally, we provide a research roadmap identifying the key areas of research required to capitalise better on the services provided by these important insects.


Subject(s)
Butterflies , Wasps , Animals , Bees , Biological Evolution , Ecosystem , Insecta
11.
Nat Commun ; 12(1): 775, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536437

ABSTRACT

Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.


Subject(s)
Adaptation, Physiological/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Social Behavior , Transcriptome/genetics , Wasps/genetics , Algorithms , Animals , Female , Gene Ontology , Gene Regulatory Networks , Humans , Machine Learning , Phenotype
12.
Genome ; 64(5): 581-590, 2021 May.
Article in English | MEDLINE | ID: mdl-33170730

ABSTRACT

Globally, biodiversity is declining because of anthropogenic pressures, and this could lead to extinction of some species before they are discovered. The loss of insect taxa is of prime concern, given recent reports of significant declines in the populations of many taxa across the globe. Efforts to document biodiversity have met with several challenges, amongst which are the difficulties in using morphological features to discriminate species, especially in insects. DNA barcoding is a rapid and reliable method for species identification and discovery but choosing appropriate primers to amplify the barcode region without co-amplifying contaminants remains a key challenge. We developed and tested a set of primers for PCR amplification of the DNA barcode region of the COI gene in polistine wasps. We tested their efficacy in 36 species of vespid wasps, and the solitary wasp Zethus miniatus Saussure. Samples were obtained from Africa, Americas, Asia, and Europe. The polistine-specific primers successfully amplified the barcode region for all polistines tested, without amplifying any Wolbachia present; they also worked with many species from the other Vespidae wasp subfamilies. The new primers are valuable for the discovery and accurate documentation of polistine wasps in the four continents.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA Primers , Pest Control , Wasps/genetics , Animals , Biodiversity , DNA/analysis , Insecta/genetics , Phylogeny , Polymerase Chain Reaction , Wasps/classification
13.
J Exp Biol ; 223(Pt 23)2020 12 11.
Article in English | MEDLINE | ID: mdl-33139391

ABSTRACT

Sex-biased dispersal is common in social species, but the dispersing sex may delay emigration if associated benefits are not immediately attainable. In the social Hymenoptera (ants, some bees and wasps), newly emerged males typically disperse from the natal nest whilst most females remain as philopatric helpers. However, little information exists on the mechanisms regulating male dispersal. Furthermore, the conservation of such mechanisms across the Hymenoptera and any role of sexual maturation are also relatively unknown. Through field observations and mark-recapture, we observed that males of the social paper wasp Polistes lanio emerge from pupation sexually immature, and delay dispersal from their natal nest for up to 7 days whilst undergoing sexual maturation. Delayed dispersal may benefit males by allowing them to mature in the safety of the nest and thus be more competitive in mating. We also demonstrate that both male dispersal and maturation are associated with juvenile hormone (JH), a key regulator of insect reproductive physiology and behaviour, which also has derived functions regulating social organisation in female Hymenoptera. Males treated with methoprene (a JH analogue) dispersed earlier and possessed significantly larger accessory glands than their age-matched controls. These results highlight the wide role of JH in social hymenopteran behaviour, with parallel ancestral functions in males and females, and raise new questions on the nature of selection for sex-biased dispersal.


Subject(s)
Wasps , Animals , Female , Juvenile Hormones , Male , Methoprene , Reproduction , Sexual Maturation
14.
Viruses ; 12(6)2020 06 02.
Article in English | MEDLINE | ID: mdl-32498304

ABSTRACT

Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized. Members of the family Vespidae interact with honey bees via predation or through the robbing of brood or honey from colonies, and these activities could result in virus transfer. In this study we screened Vespa velutina and Vespa crabro collected from Europe and China and also honey bees and Vespula vulgaris from the UK for Moku virus (MV), an Iflavirus first discovered in the predatory social wasp Vespula pensylvanica in Hawaii. MV was found in 71% of Vespulavulgaris screened and was also detected in UK Vespa crabro. Only seven percent of Vespa velutina individuals screened were MV-positive and these were exclusively samples from Jersey. Of 69 honey bee colonies screened, 43% tested positive for MV. MV replication was confirmed in Apis mellifera and Vespidae species, being most frequently detected in Vespulavulgaris. MV sequences from the UK were most similar to MV from Vespulapensylvanica compared to MV from Vespa velutina in Belgium. The implications of the transfer of viruses between the Vespidae and honey bees are discussed.


Subject(s)
Bees/virology , Insect Viruses/isolation & purification , Insect Viruses/physiology , Wasps/virology , Animals , China , Europe , Genome, Viral , Insect Viruses/classification , Insect Viruses/genetics , Phylogeny , Virus Replication
15.
Philos Trans R Soc Lond B Biol Sci ; 375(1802): 20190480, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32420861

ABSTRACT

Conspecific acceptance thresholds (Reeve 1989 Am. Nat.133, 407-435), which have been widely applied to explain ecological behaviour in animals, proposed how sensory information, prior information and the costs of decisions determine actions. Signal detection theory (Green & Swets 1966 Signal detection theory and psychophysics; SDT), which forms the basis of CAT models, has been widely used in psychological studies to partition the ability to discriminate sensory information from the action made as a result of it. In this article, we will review the application of SDT in interpreting the behaviour of laboratory animals trained in operant conditioning tasks and then consider its potential in ecological studies of animal behaviour in natural environments. Focusing on the nest-mate recognition systems exhibited by social insects, we show how the quantitative application of SDT has the potential to transform acceptance rate data into independent indices of cue sensitivity and decision criterion (also known as the acceptance threshold). However, further tests of the assumptions underlying SDT analysis are required. Overall, we argue that SDT, as conventionally applied in psychological studies, may provide clearer insights into the mechanistic basis of decision making and information processing in behavioural ecology. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.


Subject(s)
Behavior, Animal , Ethology/methods , Hymenoptera/physiology , Signal Detection, Psychological , Animals , Psychology/methods
16.
Proc Biol Sci ; 286(1914): 20191676, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31690237

ABSTRACT

Biocontrol agents can help reduce pest populations as part of an integrated pest management scheme, with minimal environmental consequences. However, biocontrol agents are often non-native species and require significant infrastructure; overuse of single agents results in pest resistance. Native biocontrol agents are urgently required for more sustainable multi-faceted approaches to pest management. Social wasps are natural predators of lepidopteran pests, yet their viability as native biocontrol agents is largely unknown. Here, we provide evidence that the social paper wasp Polistes satan is a successful predator on the larvae of two economically important and resilient crop pests, the sugarcane borer Diatraea saccharalis (on sugarcane Saccharum spp.) and the fall armyworm Spodoptera frugiperda (on maize Zea mays); P. satan wasps significantly reduce crop pest damage. These results provide the much-needed baseline experimental evidence that social wasps have untapped potential as native biocontrol agents for sustainable crop production and food security.


Subject(s)
Pest Control, Biological , Wasps/physiology , Animals , Behavior, Animal , Hemolysin Proteins , Moths , Social Behavior
17.
Curr Opin Insect Sci ; 34: 40-47, 2019 08.
Article in English | MEDLINE | ID: mdl-31247416

ABSTRACT

Major evolutionary transitions in individuality are characterised by the formation of new levels of biological complexity from the cooperation of previously independent lower-level units. The evolution of superorganismality in insects is one such major transition, and is characterised by an extreme division of reproductive labour between ancestrally autonomous units, in the form of queen and worker castes. Here, we discuss the nature of plasticity in the emergence of castes across the major transition to superorganismality in insects. We identify key changes in plasticity which act at different levels of selection: a loss of reproductivity plasticity at the individual level is matched by a gain in plasticity at the colony level. Taking multi-level selection into consideration has important implications for formulating testable hypotheses regarding the nature of plasticity in a major transition from a lower to a higher level of biological complexity.


Subject(s)
Adaptation, Physiological , Biological Evolution , Insecta/physiology , Selection, Genetic , Social Behavior , Animals , Reproduction , Sexual Behavior, Animal
18.
Mol Ecol ; 28(13): 3271-3284, 2019 07.
Article in English | MEDLINE | ID: mdl-31141235

ABSTRACT

Explaining the evolution of helping behaviour in the eusocial insects where nonreproductive ("worker") individuals help raise the offspring of other individuals ("queens") remains one of the most perplexing phenomena in the natural world. Polistes paper wasps are popular study models, as workers retain the ability to reproduce: such totipotency is likely representative of the early stages of social evolution. Polistes is thought to have originated in the tropics, where seasonal constraints on reproductive options are weak and social groups are effectively perennial. Yet, most Polistes research has focused on nontropical species, where seasonality causes family groups to disperse; cofoundresses forming new nests the following spring are often unrelated, leading to the suggestion that direct fitness through nest inheritance is key in the evolution of helping behaviour. Here, we present the first comprehensive genetic study of social structure across the perennial nesting cycle of a tropical Polistes-Polistes canadensis. Using both microsatellites and newly developed single nucleotide polymorphism markers, we show that adult cofoundresses are highly related and that brood production is monopolized by a single female across the nesting cycle. Nonreproductive cofoundresses in tropical Polistes therefore have the potential to gain high indirect fitness benefits as helpers from the outset of group formation, and these benefits persist through the nesting cycle. Direct fitness may have been less important in the origin of Polistes sociality than previously suggested. These findings stress the importance of studying a range of species with diverse life history and ecologies when considering the evolution of reproductive strategies.


Subject(s)
Genetic Fitness , Helping Behavior , Nesting Behavior , Wasps/physiology , Animals , Female , Genetic Markers , Genotype , Male , Microsatellite Repeats , Panama , Polymorphism, Single Nucleotide , Reproduction , Wasps/genetics
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180193, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30967091

ABSTRACT

Insect societies play a crucial role in the functioning of most ecosystems and have fascinated both scientists and the lay public for centuries. Despite the long history of study, we are still far from understanding how insect societies have evolved and how social cohesion in their colonies is maintained. Here we suggest inquiline social parasites of insect societies as an under-exploited experimental tool for understanding sociality. We draw on examples from obligate inquiline (permanent) social parasites in wasps, ants and bees to illustrate how these parasites may allow us to better understand societies and learn more about the evolution and functioning of insect societies. We highlight three main features of these social parasite-host systems-namely, close phylogenetic relationships, strong selective pressures arising from coevolution and multiple independent origins-that make inquiline social parasites particularly suited for this aim; we propose a conceptual comparative framework that considers trait losses, gains and modifications in social parasite-host systems. We give examples of how this framework can reveal the more elusive secrets of sociality by focusing on two cornerstones of sociality: communication and reproductive division of labour. Together with social parasites in other taxonomic groups, such as cuckoos in birds, social parasitism has a great potential to reveal the mechanisms and evolution of complex social groups. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Subject(s)
Ants/physiology , Bees/physiology , Host-Parasite Interactions , Wasps/physiology , Animals , Ants/genetics , Bees/genetics , Biological Evolution , Phylogeny , Selection, Genetic , Social Behavior , Wasps/genetics
20.
Curr Opin Insect Sci ; 28: 26-32, 2018 08.
Article in English | MEDLINE | ID: mdl-30551764

ABSTRACT

The major evolutionary transition to superorganismality has taken place several times in the insects. Although there has been much consideration of the ultimate evolutionary explanations for superorganismality, we know relatively little about what proximate mechanisms constrain or promote this major transition. Here, we propose that Vespid wasps represent an understudied, but potentially very useful, model system for studying the mechanisms underpinning superorganismality. We highlight how there is an abundance of behavioural data for many wasp species, confirming their utility in studies of social evolution; however, there is a sparsity of genomic data from which we can test proximate and ultimate hypotheses on this major evolutionary transition.


Subject(s)
Biological Evolution , Wasps/physiology , Animals , Behavior, Animal , Social Behavior , Wasps/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...