Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e27124, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449623

ABSTRACT

Barium calcium titanate (BCT) ceramics with varying yttrium doping concentrations were fabricated using the solid-state compaction process to explore the attributes of dopants. (Ba0.75Ca0.25) TiO3 and (Ba0.75Ca0.25) (YyTi(1-y)) O3 where, y = 0.00, 0.10, 0.15, and 0.20 ceramics were synthesized by pressing isostatically in pellet press apparatus, then sintered at 1250 °C with consequent cooling in furnace ambient. The structural, morphological, and dielectric properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and impedance spectroscopy interpretations, respectively. The XRD analysis revealed that the cubic BCT lattice was transformed into a tetragonal structure with Yttrium doping. Scanning electron microscopy (SEM) disclosed that yttrium doping countered the liquid phase formation of BCT as well as influenced grain development and microstructure, leading to the formation of distinct grain boundaries and improved densification. The average grain size (18-29 nm) of the Y-BCT increases as the doping level rises. At 60 Hz, it was reported that the dielectric constant obtained a maximum value of 70000 with a resistivity of 5 × 108 Ώ-cm for y = 0.15. The manifestation of the secondary phase confirmed from XRD, allocating an easy path for oxygen migration, might be responsible for the rise in oxygen vacancy, higher leakage current, and dielectric loss for y = 0.01. Co-doping of calcium and yttrium in BCT ceramics has modified the basic structure and ameliorated composites' structural stability and dielectric characteristics. The optimized sample, upon demonstrating outstanding efficiency, ought to be employed for specific uses such as energy storage devices and capacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...