Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837254

ABSTRACT

BACKGROUND: Golden angle (GA) radial trajectory is advantageous for dynamic magnetic resonance imaging (MRI). Recently, several advanced algorithms have been developed based on navigator-interleaved GA trajectory to realize free-running cardiac MRI. However, navigator-interleaved GA trajectory suffers from the eddy-current effect, which reduces the image quality. PURPOSE: This work aims to integrate the navigator-interleaved GA trajectory with clinical cardiac MRI acquisition, with the minimum eddy-current artifacts. The ultimate goal is to realize a high-quality free-running cardiac imaging technique. METHODS: In this paper, we propose a new "swing golden angle" (swingGA) radial profile order. SwingGA samples the k-space by rotating back and forth at the generalized golden ratio interval, with smoothly interleaved navigator readouts. The sampling efficiency and angle increment distributions were investigated by numerical simulations. Static phantom imaging experiments were conducted to evaluate the eddy current effect, compared with cartesian, golden angle radial (GA), and tiny golden angle (tGA) trajectories. Furthermore, 12 heart-healthy subjects (aged 21-25 years) were recruited for free-running cardiac imaging with different sampling trajectories. Dynamic images were reconstructed by a low-rank subspace-constrained algorithm. The image quality was evaluated by signal-to-noise-ratio and spectrum analysis in the heart region, and compared with traditional clinical cardiac MRI images. RESULTS: SwingGA pattern achieves the highest sampling efficiency (mSE > 0.925) and the minimum azimuthal angle increment (mAD < 1.05). SwingGA can effectively suppress eddy currents in static phantom images, with the lowest normalized root mean square error (nRMSE) values among radial trajectories. For the in-vivo cardiac images, swingGA enjoys the highest SNR both in the blood pool and myocardium, and contains the minimum level of high-frequency artifacts. The free-running cardiac images have good consistency with traditional clinical cardiac MRI, and the swingGA sampling pattern achieves the best image quality among all sampling patterns. CONCLUSIONS: The proposed swingGA sampling pattern can effectively improve the sampling efficiency and reduce the eddy currents for the navigator-interleaved GA sequence. SwingGA is a promising sampling pattern for free-running cardiac MRI.

2.
Article in English | MEDLINE | ID: mdl-38083142

ABSTRACT

Black-blood MRI is a promising imaging technique for assessing vascular diseases (e.g., stroke). Vessel wall dynamic characterization using black-blood cine MRI has been recognized as an effective tool for studying vascular diseases. However, acquiring time-resolved 3D vessel wall images often requires a long acquisition time, which limits its clinical utility. In this work, we develop a new method to achieve rapid, time-resolved 3D black-blood cine MRI. Specifically, the proposed method performs (k, t)-space undersampling to accelerate the volumetric data acquisition process. Moreover, it utilizes an image reconstruction method with low-rank and sparsity constraints to enable high-quality image reconstruction from highly-undersampled data. We validate the performance of the proposed method with 3D in vivo black-blood cine MRI experiments and show representative results to demonstrate the utility of the proposed method.


Subject(s)
Image Interpretation, Computer-Assisted , Stroke , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Image Processing, Computer-Assisted/methods
3.
Phys Med Biol ; 68(10)2023 05 09.
Article in English | MEDLINE | ID: mdl-37001546

ABSTRACT

Objective.Imaging dynamic objects with high temporal resolution is challenging in magnetic resonance imaging (MRI). The partial separable (PS) model was proposed to improve imaging quality by reducing the degrees of freedom of the inverse problem. However, the PS model still suffers from a long acquisition time and an even longer reconstruction time. The main objective of this study is to accelerate the PS model, shorten the time required for acquisition and reconstruction, and maintain good image quality simultaneously.Approach.We proposed to fully exploit the dimension-reduction property of the PS model, which means implementing the optimization algorithm in subspace. We optimized the data consistency term and used a Tikhonov regularization term based on the Frobenius norm of temporal difference. The proposed dimension-reduced optimization technique was validated in free-running cardiac MRI. We have performed both retrospective experiments on a public dataset and prospective experiments onin vivodata. The proposed method was compared with four competing algorithms based on the PS model and two non-PS model methods.Main results.The proposed method has robust performance against a shortened acquisition time or suboptimal hyper-parameter settings, and achieves superior image quality over all other competing algorithms. The proposed method is 20-fold faster than the widely accepted PS+sparse method, enabling image reconstruction to be finished in just a few seconds.Significance.The accelerated PS model has the potential to save a great deal of time in clinical dynamic MRI examinations and is promising for real-time MRI applications.


Subject(s)
Heart , Magnetic Resonance Imaging , Prospective Studies , Retrospective Studies , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
4.
J Neurodev Disord ; 15(1): 7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788499

ABSTRACT

BACKGROUND: Angelman syndrome (AS) is a neurodevelopmental disorder with serious seizures. We aim to explore the brain morphometry of patients with AS and figure out whether the seizure is associated with brain development. METHODS: Seventy-three patients and 26 healthy controls (HC) underwent high-resolution structural brain MRI. Group differences between the HC group and the AS group and also between AS patients with seizure (AS-Se) and age-matched AS patients with non-seizure (AS-NSe) were compared. The voxel-based and surface-based morphometry analyses were used in our study. Gray matter volume, cortical thickness (CTH), and local gyrification index (LGI) were assessed to analyze the cortical and subcortical structure alteration in the AS brain. RESULTS: Firstly, compared with the HC group, children with AS were found to have a significant decrease in gray matter volume in the subcortical nucleus, cortical, and cerebellum. However, the gray matter volume of AS patients in the inferior precuneus was significantly increased. Secondly, patients with AS had significantly increased LGI in the whole brain as compared with HC. Thirdly, the comparison of AS-Se and the AS-NSe groups revealed a significant decrease in caudate volume in the AS-Se group. Lastly, we further selected the caudate and the precuneus as ROIs for volumetric analysis, the AS group showed significantly increased LGI in the precuneus and reduced CTH in the right precuneus. Between the AS-Se and the AS-NSe groups, the AS-Se group exhibited significantly lower density in the caudate, while only the CTH in the left precuneus showed a significant difference. CONCLUSIONS: These results revealed cortical and subcortical morphological alterations in patients with AS, including globally the decreased brain volume in the subcortical nucleus, the increased gray matter volume of precuneus, and the whole-brain increase of LGI and reduction of CTH. The abnormal brain pattern was more serious in patients with seizures, suggesting that the occurrence of seizures may be related to abnormal brain changes.


Subject(s)
Angelman Syndrome , Child , Humans , Angelman Syndrome/complications , Angelman Syndrome/diagnostic imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Parietal Lobe , Seizures
5.
Magn Reson Med ; 89(5): 1839-1852, 2023 05.
Article in English | MEDLINE | ID: mdl-36533875

ABSTRACT

PURPOSE: To develop a new motion-resolved real-time four-dimensional (4D) flow MRI method, which enables the quantification and visualization of blood flow velocities with three-directional flow encodings and volumetric coverage without electrocardiogram (ECG) synchronization and respiration control. METHODS: An integrated imaging method is presented for real-time 4D flow MRI, which encompasses data acquisition, image reconstruction, and postprocessing. The proposed method features a specialized continuous ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space acquisition scheme, which collects two sets of data (i.e., training data and imaging data) in an interleaved manner. By exploiting strong spatiotemporal correlation of 4D flow data, it reconstructs time-series images from highly-undersampled ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space measurements with a low-rank and subspace model. Through data-binning-based postprocessing, it constructs a five-dimensional dataset (i.e., x-y-z-cardiac-respiratory), from which respiration-dependent flow information is further analyzed. The proposed method was evaluated in aortic flow imaging experiments with ten healthy subjects and two patients with atrial fibrillation. RESULTS: The proposed method achieves 2.4 mm isotropic spatial resolution and 34.4 ms temporal resolution for measuring the blood flow of the aorta. For the healthy subjects, it provides flow measurements in good agreement with those from the conventional 4D flow MRI technique. For the patients with atrial fibrillation, it is able to resolve beat-by-beat pathological flow variations, which cannot be obtained from the conventional technique. The postprocessing further provides respiration-dependent flow information. CONCLUSION: The proposed method enables high-resolution motion-resolved real-time 4D flow imaging without ECG gating and respiration control. It is able to resolve beat-by-beat blood flow variations as well as respiration-dependent flow information.


Subject(s)
Atrial Fibrillation , Humans , Magnetic Resonance Imaging/methods , Motion , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Blood Flow Velocity , Imaging, Three-Dimensional/methods
7.
J Cardiovasc Magn Reson ; 19(1): 19, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28183320

ABSTRACT

BACKGROUND: Conventional phase-contrast cardiovascular magnetic resonance (PC-CMR) employs cine-based acquisitions to assess blood flow condition, in which electro-cardiogram (ECG) gating and respiration control are generally required. This often results in lower acquisition efficiency, and limited utility in the presence of cardiovascular pathology (e.g., cardiac arrhythmia). Real-time PC-CMR, without ECG gating and respiration control, is a promising alternative that could overcome limitations of the conventional approach. But real-time PC-CMR involves image reconstruction from highly undersampled (k, t)-space data, which is very challenging. In this study, we present a novel model-based imaging method to enable high-resolution real-time PC-CMR with sparse sampling. METHODS: The proposed method captures spatiotemporal correlation among flow-compensated and flow-encoded image sequences with a novel low-rank model. The image reconstruction problem is then formulated as a low-rank matrix recovery problem. With proper temporal subspace modeling, it results in a convex optimization formulation. We further integrate this formulation with the SENSE-based parallel imaging model to handle multichannel acquisitions. The performance of the proposed method was systematically evaluated in 2D real-time PC-CMR with flow phantom experiments and in vivo experiments (with healthy subjects). Additionally, we performed a feasibility study of the proposed method on patients with cardiac arrhythmia. RESULTS: The proposed method achieves a spatial resolution of 1.8 mm and a temporal resolution of 18 ms for 2D real-time PC-CMR with one directional flow encoding. For the flow phantom experiments, both regular and irregular flow patterns were accurately captured. For the in vivo experiments with healthy subjects, flow dynamics obtained from the proposed method correlated well with those from the cine-based acquisitions. For the experiments with the arrhythmic patients, the proposed method demonstrated excellent capability of resolving the beat-by-beat flow variations, which cannot be obtained from the conventional cine-based method. CONCLUSION: The proposed method enables high-resolution real-time PC-CMR at 2D without ECG gating and respiration control. It accurately resolves beat-by-beat flow variations, which holds great promise for studying patients with irregular heartbeats.


Subject(s)
Algorithms , Arrhythmias, Cardiac/diagnosis , Coronary Circulation , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Models, Cardiovascular , Myocardial Perfusion Imaging/methods , Patient-Specific Modeling , Adult , Aged , Arrhythmias, Cardiac/physiopathology , Blood Flow Velocity , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging, Cine/instrumentation , Male , Phantoms, Imaging , Predictive Value of Tests , Time Factors , Young Adult
8.
Magn Reson Med ; 77(3): 1036-1048, 2017 03.
Article in English | MEDLINE | ID: mdl-27016025

ABSTRACT

PURPOSE: To propose and evaluate a new model-based reconstruction method for highly accelerated phase-contrast magnetic resonance imaging (PC-MRI) with sparse sampling. THEORY AND METHODS: This work presents a new constrained reconstruction method based on low-rank and sparsity constraints to accelerate PC-MRI. More specifically, we formulate the image reconstruction problem into separate reconstructions of flow-reference image sequence and complex differences. We then utilize the joint partial separability and sparsity constraints to enable high quality reconstruction from highly undersampled (k,t)-space data. We further integrate the proposed method with ESPIRiT based parallel imaging model to effectively handle multichannel acquisition. RESULTS: The proposed method was evaluated with in vivo data acquired from both 2D and 3D PC flow imaging experiments, and compared with several state-of-the-art methods. Experimental results demonstrate that the proposed method leads to more accurate velocity reconstruction from highly undersampled (k,t)-space data, and particularly superior capability of capturing the peak velocity of blood flow. In terms of flow visualization, blood flow patterns obtained from the proposed reconstruction also exhibit better agreement with those obtained from the fully sampled reference. CONCLUSION: The proposed method achieves improved accuracy over several state-of-the-art methods for velocity reconstruction with highly accelerated (k,t)-space data. Magn Reson Med 77:1036-1048, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Algorithms , Aorta/physiology , Blood Flow Velocity/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Adult , Aorta/anatomy & histology , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique , Young Adult
9.
Magn Reson Med ; 77(1): 300-309, 2017 01.
Article in English | MEDLINE | ID: mdl-26877239

ABSTRACT

PURPOSE: Diffusion time (Δ) effect in diffusion measurements has been validated as a sensitive biomarker in liver fibrosis by rat models. To extend this finding to clinical study, a reliable imaging technique is highly desirable. This study aimed to develop an optimal stimulated echo acquisition mode (STEAM) diffusion-weighted imaging (DWI) method dedicated to human liver imaging on 3 Tesla (T) and preliminarily investigate the dependence effect in healthy volunteers. METHODS: STEAM DWI with single-shot echo planar imaging readout was used as it provided better signal-to-noise ratio (SNR) than spin echo DWI methods when a long Δ was needed for liver imaging. Additionally, a slice-selection gradient reversal method was used for fat suppression. Motion compensation and SNR improvement strategies were used to further improve the image quality. Five b-values with three Δs were tested in 10 volunteers. RESULTS: Effective fat suppression and motion compensation were reproducibly achieved in the optimized sequence. The signal decay generally became slower when the Δs increased. Obvious reduction of diffusion coefficients was observed with increasing Δs in the liver. CONCLUSION: The results verified the Δ dependence in diffusion measurements, indicating restricted diffusion in healthy human livers for the first time at 3T. This prepared STEAM DWI a potential technique for liver fibrotic studies in clinical practice. Magn Reson Med 77:300-309, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Breath Holding , Humans , Phantoms, Imaging , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...